Numer pary	Imię i nazwisko	Wydział	
		rok	
		grupa	
data	Nazwisko prowadzącego	Uwagi Zali	iczenie

F26. Analiza mikrostruktur biologicznych za pomocą mikroskopu cyfrowego.

<u>Zagadnienia</u>

Prawa optyki geometrycznej, powstawanie obrazu w mikroskopie, zdolność rozdzielcza, apertura numeryczna, rola zjawiska dyfrakcji w powstawaniu obrazu w mikroskopie. Metody zwiększania zdolności rozdzielczej mikroskopu.

Literatura

Jaroszyk Rozdział 16.2.3.; 16.2.4; 16.4.2; Bobrowski Rozdział 5.3; Przestalski Rozdział II.4. Optyka geometryczna; Mikroskopia.

<u>Przyrządy i materiały:</u> mikroskop cyfrowy z kamerą, monitor, skala milimetrowa (rys. 1), próbki mikrostruktur biologicznych.

Przed przystąpieniem do wykonania ćwiczenia zalecane jest zapoznanie się z instrukcją obsługi mikroskopu cyfrowego dostępną jako materiał dodatkowy do ćwiczenia.

Przebieg pomiarów – Część I:

- 1. Włącz mikroskop, kamerę i monitor.
- Obniż stolik mikroskopu na najniższe położenie za pomocą śruby makrometrycznej. Ustaw do obserwacji obiektyw o powiększeniu 4x (oznaczony kolorem czerwonym).

3. Odczytaj wskazaną na obiektywie wartość apertury Rys.1. Skala milimetrowa. numerycznej i oblicz zdolność rozdzielczą obiektywu ze wzoru: $R = \frac{\lambda}{2 \cdot NA}$, gdzie

długość fali oświetlającej wynosi $\lambda = 670$ nm.

Zdolność rozdzielcza obiektywu $\mathbf{R}_{4x} = \dots$ [......]

- 4. Na stoliku mikroskopu połóż równo skalę milimetrową. Za pomocą śruby makro- i mikrometrycznej ustaw ostry obraz oglądanego fragmentu skali.
- 5. Dokonaj kalibracji mikroskopu dla wybranego obiektywu. W tym celu włącz funkcję kalibracji na pasku menu na górze ekranu (przycisk *Callibration*).
- 6. W oknie kalibracji w polu *Magnification* wybierz aktualny obiektyw (4x).
- 7. Przeciągnij za pomocą myszy linię, która pojawiła się po włączeniu funkcji kalibracji, między dwoma punktami skali o znanej odległości i wpisz jej wartość (w mm) w polu *Actual Lenght*, wybierając jednocześnie jednostkę *Millimeter*.
- 8. Zapisz ustawienia przyciskiem OK i zamknij okno kalibracji.
- 9. Zdejmij z podstawki mikroskopu skalę milimetrową i w jej miejsce umieść badaną próbkę drewna. Ustaw ostry obraz próbki za pomocą śruby mikrometrycznej.
- 10. W górnym pasku menu wybierz narzędzie pomiarowe *Center* + *Radius* lub *Three Points* i dopasuj wielkość rysowanych okręgów do co najmniej sześciu kapilar o zbliżonej wielkości. Kapilary to białe, koliste obszary widoczne na próbce. W razie konieczności przesuń stolik mikroskopu tak by obserwować inny obszar próbki.

- 11. Odczytaj wartości średnicy **d** oraz powierzchni **S**₁ mierzonych kapilar. Wyniki pomiarów wpisz do Tabeli 1.
- 12. Korzystając z tych samych narzędzi pomiarowych (pkt.10), zaznacz fragment oglądanego obrazu, jako pole obserwacji i zanotuj w Tabeli 2 jego powierzchnię S₂.
- 13. Policz i zapisz jako N, liczbę kapilar znajdujących się w wybranym polu obserwacji.
- 14. Przesuń stolik mikroskopu tak by widoczny był inny obszar próbki, zaznacz ponownie pole obserwacji oraz policz ilość kapilar w wybranym polu obserwacji. Pomiary powtórz jeszcze dla kilku innych fragmentów próbki.

Tabela 1.					Tabela 2.			
Lp.	Średnica	Promień	Powierzchnia		Powierzchnia	Ilość kapilar w	Ilość kapilar,	
	kapilar d	kapilar r	kapilar S1		pola obserwacji	polu	przypadająca na	
	[mm]	[mm]	[mm ²]		$S_2 [{ m cm}^2]$	obserwacji N	$1 \text{ cm}^2 N/S_2 [1/\text{cm}^2]$	
1								
2								
3								
4								
5								
6								
	wartość					wartość		
	średnia					średnia		
	odchylenie					odchylenie		
	standardowe					standardowe		
	3·SD					3·SD		

<u> Opracowanie wyników – Część I:</u>

- 1. Na podstawie zmierzonych wartości średnicy kapilar oblicz wartość promienia dla każdego pomiaru a następnie wartości średnie dla promienia oraz powierzchni kapilar, odchylenia standardowe (SD) oraz błędy pomiarowe jako trzykrotność wartości SD.
- 2. Korzystając z obliczonej średniej wartości promienia kapilar \mathbf{r}_{sr} oblicz wysokość wzniesienia kapilarnego **h** dla tej wartości zgodnie ze wzorem:

$$h = \frac{2\alpha}{g\rho r_{\acute{s}r}} =$$

gdzie: α – napięcie powierzchniowe wody 70·10⁻³ N/m ; g – przyśpieszenie ziemskie 9.81 m/s²; ρ – gęstość wody 10³ kg/m³. Uwaga! Wartości promienia kapilar rśr wstawiamy do wzoru w metrach!

3. Oblicz błąd wzniesienia kapilarnego metodą różniczki logarytmicznej:

 $\Delta h =$

- 4. Znając ilość kapilar N w polu obserwacji, oblicz, ile kapilar przypada średnio na 1 cm² przekroju poprzecznego drewna (w tym celu odczytaną w mm^2 wartość pola powierzchni S₂ wyraź w cm^2).
- 5. Oblicz wartość średnią stosunku N/S2 oraz jego błąd pomiarowy jako 3 SD.
- 6. Dokonaj odpowiednich zaokrągleń i zestawień wyników:

$r_{sr} = ($	±)[]	h = (±)[]
$S_{1 \pm r} = ($	±)[]	$N/S_2 = ($	±)[]

Przebieg pomiarów – Część II:

- 1. Obniż stolik mikroskopu na najniższe położenie za pomocą śruby makrometrycznej. Ustaw do obserwacji obiektyw o powiększeniu **10x** (oznaczony kolorem żółtym).
- Oblicz zdolność rozdzielczą i dokonaj kalibracji mikroskopu dla wybranego obiektywu analogicznie jak w punktach 3-8 Części I pomiarów.
 Zdolność rozdzielczą skieltowa P
- 3. Zdejmij z podstawki mikroskopu skalę milimetrową i w jej miejsce umieść badaną próbkę liścia Przesiąkry ołówkowej (*Hydrilla verticillata*). Ustaw ostry obraz próbki za pomocą śruby mikrometrycznej tak, by widoczna była struktura komórkowa powierzchni liścia.
- 4. Z górnego paska menu wybierz narzędzie pomiarowe *Rectangle* i dopasuj wielkość rysowanych prostokątów do co najmniej sześciu różnych komórek.
- 5. Odczytaj wartości wysokości W oraz szerokości L obserwowanych struktur. Wyniki pomiarów wpisz do Tabeli 3. Uwaga: szerokość i wysokość każdej komórki możemy również zmierzyć używając narzędzia Arbitrary Line, za pomocą którego wyznaczamy długość danego odcinka rysując linię w dowolnym miejscu i kierunku.

Tabela 3. Zmierzone wartości wysokości W oraz szerokości L komórek wraz z obliczonym polem powierzchni A.

Nr komórki	W [mm]	L [mm]	A [mm ²]
1			
2			
3			
4			
5			
6			
		wartość średnia	
		odchylenie standardowe	
		3·SD	

<u> Opracowanie wyników – Część II:</u>

- 1. Na podstawie zmierzonych wartości W i L oblicz pole powierzchni A komórki.
- 2. Następnie oblicz średnią wartość pola powierzchni dla obserwowanych komórek liścia oraz błąd pomiarowy, jako trzykrotność odchylenia standardowego.
- 3. Dokonaj odpowiednich zaokrągleń i zestawienia wyników:

$$\mathbf{A} = (\pm) []$$

Zadanie dla chętnych

Przy wyskalowanym obiektywie o powiększeniu **10x** na stoliku umieść siatkę dyfrakcyjną. Ustaw ostry obraz powierzchni siatki tak, by widoczne były wyraźne linie siatki. Za pomocą narzędzia **Annotation Scale Bar** przywołaj na ekranie podziałkę skali w jednym z dostępnych rozmiarów (S – XL). Przesuń ją w dowolne miejsce na ekranie i policz ile linii siatki mieści się na pasku skali. Podaj ilość linii siatki przypadającą na 1 mm (Uwaga praktyczna: na podstawie tej danej możemy obliczyć stałą siatki dyfrakcyjnej jako odwrotność tej wielkości):