Fourth Moment of Random Determinant

Dominik Beck

Faculty of Mathematics and Physics, Charles University Prague, Czech Republic

Abstract

Let X_{ij} be independent and identically distributed random variables, from which we construct matrices $A = (X_{ij})_{n \times n}$ and $U = (X_{ij})_{n \times p}$. We denote moments of their entries X_{ij} as $m_r = \mathbb{E}X_{ij}^r$ and their central moments as $\mu_r = \mathbb{E}(X_{ij} - m_1)^r$. Is there a way how we can express the even moments of determinants det A and $(\det U^\top U)^{1/2}$ in an exact form? That is, the objective is to find $f_k(n) = \mathbb{E} (\det A)^k$ and $f_k(n, p) = \mathbb{E} (\det U^\top U)^{k/2}$ as a function of m_r (or μ_r). Equivalently, one could first try to find the generating functions $F_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} f_k(n)$ and $F_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^n \frac{(n-p)!}{n!p!} t^p \omega^{n-p} f_k(n, p)$. The exact expression for $F_2(t)$ and $F_2(t, \omega)$ can be easily derived

The exact expression for $F_2(t)$ and $F_2(t, \omega)$ can be easily derived using recurrences for any distribution of X_{ij} . For higher moments, it is not that simple. In the case of fourth moment, Nyquist, Rice and Riordan found the expression for $F_4(t)$ when $m_1 = 0$. Later, Dembo [2] derived $F_4(t, \omega)$ when $m_1 = 0$. The general case for both $F_4(t)$ and $F_4(t, \omega)$ when $m_1 \neq 0$ remained unsolved. However, as shown in recent arXiv preprint [1], we obtained

$$\begin{split} F_4(t) &= \frac{e^{t(\mu_4 - 3\mu_2^2)}}{(1 - \mu_2^2 t)^3} \left(\left(1 + m_1 \mu_3 t\right)^4 + 6m_1^2 \mu_2 t \frac{(1 + m_1 \mu_3 t)^2}{1 - \mu_2^2 t} + m_1^4 t \frac{1 + 7\mu_2^2 t + 4\mu_2^4 t^2}{(1 - \mu_2^2 t)^2} \right), \\ F_4(t, \omega) &= \frac{e^{t(\mu_4 - 3\mu_2^2)}}{(1 - \mu_2^2 t)^2 (1 - \omega - \mu_2^2 t)} \left[\left(1 + m_1 \mu_3 t\right)^4 + \frac{6m_1^2 \mu_2 t (1 + m_1 \mu_3 t)^2}{1 - \mu_2^2 t} + \frac{m_1^4 t (1 + 7\mu_2^2 t + 4\mu_2^4 t^2)}{(1 - \mu_2^2 t)^2} \right) \right] \\ &+ \frac{\omega m_1^2 t}{1 - \omega - \mu_2^2 t} \left(\frac{2\mu_2 (1 + m_1 \mu_3 t)^2}{1 - \mu_2^2 t} + \frac{m_1^2 (1 + 5t\mu_2^2 + 2t^2 \mu_2^4)}{(1 - \mu_2^2 t)^2} \right) + \frac{2t^2 \omega^2 m_1^4 \mu_2^2}{(1 - \omega - \mu_2^2 t)^2 (1 - \mu_2^2 t)^2} \right]. \end{split}$$

One can easily deduce the moments $f_4(n)$ and $f_4(n,p)$ via Taylor expansion.

References

- D. Beck (2022). On the fourth moment of a random determinant. Arxiv preprint arXiv:2207.09311 [math.pr].
- [2] A. Dembo (1989). On random determinants. Quarterly of Applied Mathematics 47(2), 185–195.
- [3] H. Nyquist, S. O. Rice and J. Riordan (1954). The distribution of random determinants. Quarterly of Applied Mathematics 12(2), 97–104.