Fourth Moment of Random Determinant

Dominik Beck
Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic

Abstract

Let $X_{i j}$ be independent and identically distributed random variables, from which we construct matrices $A=\left(X_{i j}\right)_{n \times n}$ and $U=$ $\left(X_{i j}\right)_{n \times p}$. We denote moments of their entries $X_{i j}$ as $m_{r}=\mathbb{E} X_{i j}^{r}$ and their central moments as $\mu_{r}=\mathbb{E}\left(X_{i j}-m_{1}\right)^{r}$. Is there a way how we can express the even moments of determinants $\operatorname{det} A$ and $\left(\operatorname{det} U^{\top} U\right)^{1 / 2}$ in an exact form? That is, the objective is to find $f_{k}(n)=\mathbb{E}(\operatorname{det} A)^{k}$ and $f_{k}(n, p)=\mathbb{E}\left(\operatorname{det} U^{\top} U\right)^{k / 2}$ as a function of $m_{r}\left(\right.$ or $\left.\mu_{r}\right)$. Equivalently, one could first try to find the generating functions $F_{k}(t)=$ $\sum_{n=0}^{\infty} \frac{t^{n}}{(n!)^{2}} f_{k}(n)$ and $F_{k}(t, \omega)=\sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^{p} \omega^{n-p} f_{k}(n, p)$.

The exact expression for $F_{2}(t)$ and $F_{2}(t, \omega)$ can be easily derived using recurrences for any distribution of $X_{i j}$. For higher moments, it is not that simple. In the case of fourth moment, Nyquist, Rice and Riordan found the expression for $F_{4}(t)$ when $m_{1}=0$. Later, Dembo [2] derived $F_{4}(t, \omega)$ when $m_{1}=0$. The general case for both $F_{4}(t)$ and $F_{4}(t, \omega)$ when $m_{1} \neq 0$ remained unsolved. However, as shown in recent arXiv preprint [1], we obtained $F_{4}(t)=\frac{e^{t\left(\mu_{4}-3 \mu_{2}^{2}\right)}}{\left(1-\mu_{2}^{2} t\right)^{3}}\left(\left(1+m_{1} \mu_{3} t\right)^{4}+6 m_{1}^{2} \mu_{2} t \frac{\left(1+m_{1} \mu_{3} t\right)^{2}}{1-\mu_{2}^{2} t}+m_{1}^{4} t \frac{1+7 \mu_{2}^{2} t+4 \mu_{2}^{4} t^{2}}{\left(1-\mu_{2}^{2} t\right)^{2}}\right)$, $F_{4}(t, \omega)=\frac{e^{t\left(\mu_{4}-3 \mu_{2}^{2}\right)}}{\left(1-\mu_{2}^{t} t\right)^{2}\left(1-\omega-\mu_{2}^{2} t\right)}\left[\left(1+m_{1} \mu_{3} t\right)^{4}+\frac{6 m_{1}^{2} \mu_{2} t\left(1+m_{1} \mu_{3} t\right)^{2}}{1-\mu_{2}^{2} t}+\frac{m_{1}^{4} t\left(1+7 \mu_{2}^{2} t+4 \mu_{2}^{4} t^{2}\right)}{\left(1-\mu_{2}^{t} t\right)^{2}}\right.$ $\left.+\frac{\omega m_{1}^{2} t}{1-\omega-\mu_{2}^{2} t}\left(\frac{2 \mu_{2}\left(1+m_{1} \mu_{3} t\right)^{2}}{1-\mu_{2}^{2} t}+\frac{m_{1}^{2}\left(1+5 t \mu_{2}^{2}+2 t^{2} \mu_{2}^{4}\right)}{\left(1-\mu_{2}^{2} t\right)^{2}}\right)+\frac{2 t^{2} \omega^{2} m_{1}^{4} \mu_{2}^{2}}{\left(1-\omega-\mu_{2}^{2} t\right)^{2}\left(1-\mu_{2}^{2} t\right)^{2}}\right]$.

One can easily deduce the moments $f_{4}(n)$ and $f_{4}(n, p)$ via Taylor expansion.

References

[1] D. Beck (2022). On the fourth moment of a random determinant. Arxiv preprint arXiv:2207.09311 [math.pr].
[2] A. Dembo (1989). On random determinants. Quarterly of Applied Mathematics 47(2), 185-195.
[3] H. Nyquist, S. O. Rice and J. Riordan (1954). The distribution of random determinants. Quarterly of Applied Mathematics 12(2), 97-104.

