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Abstract

Let Xij be independent and identically distributed random vari-
ables, from which we construct matrices A = (Xij)n×n and U =
(Xij)n×p. We denote moments of their entries Xij as mr = EXr

ij and
their central moments as µr = E (Xij −m1)r. Is there a way how we
can express the even moments of determinants detA and (detU>U)1/2

in an exact form? That is, the objective is to find fk(n) = E (detA)k

and fk(n, p) = E (detU>U)k/2 as a function of mr (or µr). Equiv-
alently, one could first try to find the generating functions Fk(t) =∑∞
n=0

tn
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fk(n) and Fk(t, ω) =
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tpωn−pfk(n, p).

The exact expression for F2(t) and F2(t, ω) can be easily derived
using recurrences for any distribution of Xij . For higher moments, it
is not that simple. In the case of fourth moment, Nyquist, Rice and
Riordan found the expression for F4(t) when m1 = 0. Later, Dembo
[2] derived F4(t, ω) when m1 = 0. The general case for both F4(t) and
F4(t, ω) when m1 6= 0 remained unsolved. However, as shown in recent
arXiv preprint [1], we obtained

F4(t) = et(µ4−3µ22)
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F4(t, ω)= et(µ4−3µ22)
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.

One can easily deduce the moments f4(n) and f4(n, p) via Taylor
expansion.
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