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Abstract

This paper constructs a new estimator for large covariance matrices
by drawing a bridge between the classic [1] estimator in finite samples
and recent progress under large-dimensional asymptotics. The estima-
tor keeps the eigenvectors of the sample covariance matrix and applies
shrinkage to the inverse sample eigenvalues. The corresponding for-
mula is quadratic: it has two shrinkage targets weighted by quadratic
functions of the concentration (that is, matrix dimension divided by
sample size). The first target dominates mid-level concentrations and
the second one higher levels. This extra degree of freedom enables us
to outperform linear shrinkage when optimal shrinkage is not linear
(which is the general case). Both of our targets are based on what
we term the “Stein shrinker”, a local attraction operator that pulls
sample covariance matrix eigenvalues towards their nearest neighbors,
but whose force diminishes with distance, like gravitation. We prove
that no cubic or higher-order nonlinearities beat quadratic with respect
to Frobenius loss under large-dimensional asymptotics. Non-normality
and the case where the matrix dimension exceeds the sample size are
accommodated. Monte Carlo simulations confirm state-of-the-art per-
formance in terms of accuracy, speed, and scalability.
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