Logarithmic law of large random correlation matrices

Nestor Parolya ${ }^{1}$, Johannes Heiny ${ }^{2}$, Dorota Kurowicka ${ }^{1}$

${ }^{1}$ Delft Institute of Applied Mathematics, TU Delft, The Netherlands

Abstract

Consider a random vector $\mathbf{y}=\boldsymbol{\Sigma}^{1 / 2} \mathbf{x}$, where the p elements of the vector \mathbf{x} are i.i.d. real-valued random variables with zero mean and finite fourth moment, and $\boldsymbol{\Sigma}^{1 / 2}$ is a deterministic $p \times p$ matrix such that the eigenvalues of the population correlation matrix \mathbf{R} of \mathbf{y} are uniformly bounded away from zero and infinity. In this paper, we find that the \log determinant of the sample correlation matrix \mathbf{R} based on a sample of size n from the distribution of \mathbf{y} satisfies a CLT (central limit theorem) for $p / n \rightarrow \gamma \in(0,1]$ and $p \leq n$. Explicit formulas for the asymptotic mean and variance are provided. In case the mean of \mathbf{y} is unknown, we show that after re-centering by the empirical mean the obtained CLT holds with a shift in the asymptotic mean. This result is of independent interest in both large dimensional random matrix theory and high-dimensional statistical literature of large sample correlation matrices for non-normal data. Finally, the obtained findings are applied for testing of uncorrelatedness of p random variables. Surprisingly, in the null case $\mathbf{R}=\mathbf{I}$, the test statistic becomes distribution-free and we show analytically that the obtained CLT also holds if the moments of order four do not exist at all, which conjectures a promising and robust test statistic for heavy-tailed high-dimensional data.

This talk is based on papers [1] and [2].

Keywords

Random Matrix Theory, Sample Correlation Matrix, Logarithmic Determinant, Central Limit Theorems, Large Dimensional Asymptotics.

References

[1] Logarithmic law of large random correlation matrices, N. Parolya, J. Heiny and D. Kurowicka, Bernoulli 2023. link
[2] Log determinant of large correlation matrices under infinite fourth moment, J. Heiny and N. Parolya, Ann. Henri Poincaré (B) - Prob. et Stat. 2023. link

