Trace of powers of Wishart matrices in testing covariance matrix

Jolanta Pielaszkiewicz

The Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Sweden

Abstract

Assume that a matrix $X: p \times n$ is matrix normally distributed and that the Kolmogorov condition, i.e., $\lim _{n, p \rightarrow \infty} \frac{n}{p}=c>0$, holds. Then, following [3], a test for identity of the covariance matrix using a goodness-of-fit approach is recalled. Calculations are based on a recursive formula derived by [1]. Recently, new extension of recursive formula into general covariance matrix Σ was derived by [4]. Talk addresses this extension and it's possible use for testing more general structures of covariance matrices.

Keywords

trace, spectral moments, high-dimensional regime, Wishart matrix, covariance matrix, recursive formula.

References

[1] Pielaszkiewicz, J., von Rosen, D., Singull, M. (2015a). On $E\left[\prod_{i=0}^{k} \operatorname{tr}\left\{W^{m_{i}}\right\}\right]$, where $W \sim \mathcal{W}_{p}(I, n)$, Communications in Statistics - Theory and Methods.
[2] Pielaszkiewicz, J., von Rosen, D., Singull, M. (2018). On p / n-asymptotic distribution of vector of weighted traces of powers of Wishart matrices. Electronic Journal of Linear Algebra 33, 24-40.
[3] Pielaszkiewicz, J., von Rosen, D., Singull, M. (2017). Testing Independence via Spectral Moments. In: Bebiano, N. (eds) Applied and Computational Matrix Analysis. MAT-TRIAD 2015. Springer Proceedings in Mathematics \& Statistics, vol 192. Springer, Cham.
[4] Kan, R., Hillier, G. (2022). On the expectations of equivariant matrixvalued functions of Wishart and inverse Wishart matrices. Available at http://dx.doi.org/10.2139/ssrn. 4096101

