Distance Laplacians of connected graphs

R. Balaji, Vinayak Gupta

Department of Mathematics, Indian Institute of Technology Madras, India

Abstract

Consider a connected graph G with n vertices. Then the combinatorial Laplacian of G is the $n \times n$ matrix $$
L(G):=\operatorname{Deg}(G)-A(G)
$$ where $\operatorname{Deg}(G)$ is the diagonal matrix with degrees on the diagonal and $A(G)$ is the adjacency matrix. $L(G)$ has certain properties: It is an Mmatrix, $\operatorname{rank}(L(G))$ is $n-1$ and the sum of each row and column is zero. In general, the Moore-Penrose inverse of $L(G)$ is not an M-matrix and it is quite rare to find connected graphs for which the Moore-Penrose inverse of $L(G)$ is an M-matrix.

In this presentation, we will discuss an alternative Laplacian matrix, denoted as $T(G)$, which retains all the characteristics of a Laplacian while having the special property that the Moore-Penrose inverse of $T(G)$ is an M-matrix. To construct $T(G)$, we replace the adjacency matrix $A(G)$ by a suitable non-negative matrix.

Keywords

Laplacian matrices, complete graphs, M-matrices, resistance matrices.

References

[1] Bapat, R.B. (2014). Graphs and matrices Springer-verlag-London.
[2] Kirkland, S.J. and Neumann, M. (1998). The M-matrix group generalized inverse problem for weighted trees, SIAM J. Matrix Analysis Anal. Appl. 19, 226-234
[3] Styan, G.P. and Subak Sharpe, G.E, (1997). Inequalities and equalities associated with the Campbell-Youla generalized inverse of the indefinite admittance matrix of resistive networks, Linear Algebra Appl. 250, 349370.

