The Moore-Penrose inverse of a Wishart matrix and its first moments

Dietrich von Rosen^{1,2}

¹Energy and Technology, Swedish University of Agricultural Sciences ²Department of Mathematics, Linköping University

Abstract

The Moore-Penrose inverse of a Wishart matrix is often used as a plug-in estimator of a dispersion matrix when the degrees of freedom are smaller than the number of columns/rows. If $\mathbf{X} \sim \mathbf{N}_{\mathbf{p},\mathbf{n}}(\mathbf{B}\mathbf{C}, \boldsymbol{\Sigma}, \mathbf{I}_{\mathbf{n}})$ (MANOVA model) the sample covariance equals

$$\mathbf{S} = \mathbf{X} (\mathbf{I}_{\mathbf{n}} - \mathbf{C}^{\top} (\mathbf{C} \mathbf{C}^{\top})^{-} \mathbf{C}) \mathbf{X}^{\top}.$$

The sample covariance matrix can always be factorized as $\mathbf{S} = \mathbf{V}\mathbf{V}^{\top}$, where \mathbf{V} is of size $p \times t$, p > t (singular case). Then, if \mathbf{S} is singular its Moore-Penrose can be written

$$\mathbf{S}^+ = \mathbf{V}(\mathbf{V}^\top \mathbf{V})^{-1} (\mathbf{V}^\top \mathbf{V})^{-1} \mathbf{V}^\top.$$

Utilizing this result, in the presentation some results for $E[\mathbf{S}^+]$ and $D[\mathbf{S}^+]$ are given.