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A B S T R A C T

This paper presents a two-step inverse-based numerical homogenization framework for the mechanical char
acterization of converted corrugated board. The methodology combines high-fidelity 3D simulations with global 
plate modeling, enabling the extraction of homogenized stiffness parameters that account for imperfections such 
as fluting flattening and local degradation of paper properties during converting processes. In the first step, a 3D 
finite element model of a corrugated structure is perturbed to simulate realistic imperfections. The mechanical 
response is computed for multiple loading conditions. A simplified homogenized plate model is then calibrated 
using inverse optimization to match the 3D response, resulting in an identified plane stress membrane, bending 
and shear components known from the standard plate and shell theories of orthotropic materials In the second 
step, these reference stiffness values are used to inversely identify the geometric and material parameters of the 
constituent layers. The design variables include fluting geometry and the thickness and orthotropic elastic 
properties of each paper layer. The optimization reveals which parameters have the strongest influence on global 
behavior, offering insights into process sensitivity. The proposed method provides a robust and efficient path 
from microstructural features to global mechanical performance, suitable for design and quality control in in
dustrial packaging applications. The framework may also be extended using neural networks for rapid estima
tion, enabling integration into broader simulation pipelines.

1. Introduction

Corrugated board is one of the most widely used materials in the 
packaging industry due to its excellent strength-to-weight ratio, low 
cost, and recyclability [1–3]. The most common three-layered board is 
typically composed of a fluted corrugated core sandwiched between two 
flat linerboards, resulting in a lightweight structure with complex me
chanical behavior. The anisotropic nature of the material [4], along with 
the influence of the geometric configuration and constituent material 
properties, makes its mechanical characterization a nontrivial task 
[1,5,6]. Therefore, special numerical techniques must be used, such as 
numerical homogenization.

From a general viewpoint, in computational mechanics, numerical 

homogenization is a well-established approach, employed to estimate 
the effective macroscopic behavior of materials with complex micro
structures. In the context of layered or periodic structured natural/ 
artificial materials, such as corrugated board, classic homogenization 
techniques such as the asymptotic expansion method, first-order and 
higher-order periodic homogenization, and RVE modeling are 
commonly employed; some application examples can be found in 
[7–10], specifically for corrugated board panels and packages. These 
approaches allow a reduction in computational complexity by 
substituting the detailed microstructure with a homogeneous equivalent 
model, while offering and effective, sufficient level of mechanical de
tailing and structural behavior description. In particular, for computa
tional modeling of shell-like structures, such as those typically employed 
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in corrugated board structural components, first-order homogenization 
methods have been proposed, among others, by Buannic et al. [11], 
Biancolini and Butti [8], and Talbi et al. [12]. Further developments 
have been searched, for higher-order homogenization, with effective 
more refined modeling by Tran et al. [13], Al Jahwari and Naguib [14], 
and Khakalo and Niiranen [15]. Relevant application examples of such 
homogenization strategies can be additionally found, with specific focus 
to the asymptotic expansion method (see, e.g., [16,17]), and to RVE 
modeling (see, e.g., [18,19]).

For corrugated board materials, various numerical and analytical 
homogenization approaches have been developed. Early models used 
beam or shell theories to represent the fluted layer, coupled with 
equivalent orthotropic plate formulations for the entire structure [8]. 
More advanced methods incorporated 2D or 3D RVEs that explicitly 
captured the corrugated geometry to extract stiffness tensors under 
different boundary conditions [20]. However, such techniques are 
typically limited to unconverted configurations of cardboards and are 
not yet suitable to capture and assess imperfections or production 
process-induced heterogeneities.

In order to delve into difficulties of structural assessment and iden
tification, following another branch of computational mechanics, in
verse methods aim at estimating unknown model parameters by 
minimizing the error between simulated responses and experimental or 
reference data (see, e.g., [21–23]). These methods have been extensively 
applied in material modeling, particularly when direct measurement of 
parameters is impractical (to complex or for innovative materials) or 
when constitutive models need to account for multi-axial and highly 
non-linear behaviors, e.g., anisotropy, plasticity, damage, fracture and 
delamination [24,25].

Within such a framework, optimization-based inverse techniques, 
including mathematical programming, artificial intelligence and 
evolutionary algorithms, are often used in combination with finite 
element (FE) simulations to perform model calibration. In multi-scale 
problems, inverse methods have been applied to relate experimental 
data with homogenized models, enabling parameter updates based on 
macroscopic tests (see, e.g., [9]). This strategy makes them highly 
suitable for the current context, where mechanical behavior may be 
altered by conversion processes due to production of the cardboard and 
is not directly inferable from constituent material data (see, e.g., [26]).

Numerous studies have addressed the mechanical modeling of 
corrugated board under various loading conditions, such as tensile, 
bending, shear, and compression, namely referring to tests such as: Edge 
Crush Test (ECT), four-point Bending Tests (BNT) in both the Machine 
(MD) and Cross-machine Directions (CD), Shear Stiffness Tests (SST), 
and Transverse Shear Tests (TST). Cardboard models often highlight the 
strong anisotropy of the material and the sensitivity of mechanical 
behavior to the fluting geometry, paper grades, temperature, and rela
tive humidity content [6,27–30]. Analytical and numerical homogeni
zation methods have been used to simulate packaging structures, such as 
boxes or panels, under realistic conditions (see, e.g., [31–37]).

Nonetheless, modeling converted corrugated board introduces 
additional challenges, both form mechanical and computational stand
points. Conversion processes such as creasing, die-cutting, and folding 
introduce local damage, stiffness degradation, and geometric disconti
nuities [26,38]. Recent efforts have tried to capture these effects using 
damage mechanics models or empirical degradation factors applied ad 
hoc [39–43], although, such approaches typically are not generalizable 
across different geometries or loading cases.

To address these limitations, a research path may integrate multi- 
scale modeling with inverse parameter identification, allowing models 
to adapt to changes in structural integrity introduced during conversion. 
Still, most of these methods are in their early stages and are rarely 
applied in a systematic, iterative framework like the one proposed in this 
study. The literature highlights the growing need for homogenization 
approaches that are both accurate and adaptable to real-world material 
modifications. While classic homogenization techniques and inverse 

methods are individually well-established, their combination in a multi- 
step framework delves toward an innovative approach, particularly for 
complex layered systems like converted corrugated board. This research 
addresses this gap by proposing an inverse-based numerical homoge
nization methodology capable of capturing both material anisotropy 
and possible conversion-induced alterations, in an effective and robust 
manner.

The intrinsic complexity of corrugated board is further exacerbated 
by the converting process, which refers to board materials after they 
have undergone industrial processing operations such as cutting, 
folding, gluing, creasing, and printing. These conversion processes 
introduce localized deformations, residual stresses, and often irrevers
ible damage in critical regions. As a result, the effective mechanical 
properties of the board, and consistently the homogenized numerical 
properties, can deviate significantly from those of the original flat panels 
[39,44–46]. Accurate modeling of such behavior is essential for pre
dicting performance in end-use applications, such as packaging design, 
structural optimization, and failure analysis.

Traditional modeling approaches include fully resolved finite 
element models that explicitly simulate the geometry of the corrugation, 
as well as classic homogenization methods that aim to derive effective 
material properties for macro-scale simulation. While the former offers 
high fidelity, it is computationally expensive and impractical for large- 
scale applications. On the other hand, classic homogenization often 
fails to capture the influence of conversion-induced features and 
microstructural heterogeneity [12,39].

In order to bridge this gap, this paper presents a novel inverse-based 
multi-step numerical homogenization framework aimed at the me
chanical characterization of converted corrugated board. The proposed 
approach combines a two-stage inverse modeling technique with a nu
merical homogenization scheme. At its core, the method involves 
identifying effective material parameters by minimizing the discrepancy 
between experimental observations or detailed simulations and the 
response of a simplified (homogenized) model. This inverse problem is 
solved iteratively, either by mathematical programming or artificial 
intelligence methods, allowing for the progressive refinement of the 
homogenized material behavior across multiple scales. The multi-step 
structure of the approach allows for a sequential transition from fine- 
scale geometric modeling to coarse-scale homogenized representa
tions, each step incorporating corrections informed by inverse analysis. 
This enables the model to account for both intrinsic material anisotropy 
and conversion-related modifications. Importantly, this method bal
ances accuracy and efficiency, making it suitable for industrial appli
cations where rapid simulation and prediction are critical.

The proposed framework is validated through a series of numerical 
experiments and comparison with experimental test data measurements. 
The gathered results demonstrate the method ability to reproduce key 
mechanical behaviors observed in converted corrugated structures, 
including stiffness degradation, and direction-dependent strength, by 
providing an accurate and computationally efficient tool for mechanical 
material characterization.

2. Methodology

2.1. Overview of the research workflow

The aim of the methodology presented in the paper is to robustly 
retrieve the converted properties of the cardboard. The overall meth
odology consists of three key stages: (i) experimental testing (which, in 
this paper, in Results Section, is replaced by pseudo-experimental 
approach), (ii) inverse identification of effective stiffness parameters 
of converted board (Inverse Problem I), and (iii) iterative parameter 
adjustment to identify board imperfections (Inverse Problem II). Sche
matically, the procedure was presented in Fig. 1; specifically, Fig. 1(a) 
represents Inverse Problem I, while Fig. 1(b) reflects Inverse Problem II. 
In the paper, for development and validation of the methodology, the 
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experimental testing is replaced by a pseudo-experimental approach – 
see right side of Fig. 1(a) – the experimental data were generated by a 
numerical method.

In the methodology, the corrugated board samples are tested by six 
reference mechanical procedures, to determine their effective stiffness 
behavior under different loading conditions (see Section 2.2). The 
following tests are used: ECT, which measures the compressive strength 
of board along the edge, four-point bending stiffness test in machine and 
cross-machine direction (here abbreviated as BNT-MD and BNT-CD, 
respectively), which evaluates the flexural rigidity, torsional stiffness 
test again in machine and cross-machine direction (here abbreviated as 
TST-MD and TST-CD, respectively), which measures the material resis
tance to twisting, and SST, which represents the in-plane shear behavior 

using a square sample. For each test, force–displacement curves were 
generated by finite element method computations, which served as 
reference experimental data for numerical calibrations for the left side – 
Fig. 1(a) and 1(b).

2.1.1. Pseudo-experimental testing
Since this study presents the methodology, physical experiments, see 

Section 2.2, were replaced by high-fidelity 3D FE models of the actual 
recommended test specimens, which are described in Section 2.3. These 
models fully replicated the mechanical tests under adequate and real
istic boundary conditions.

To simulate real-world production-related defects, the following 
types of imperfections must be considered: 

(a)

(b)

Fig. 1. Graphical representation of inverse-based multi-step mechanical characterization of converted corrugated board: (a) inverse identification of effective 
stiffness parameters (Inverse Problem I) and (b) iterative parameter adjustment to identify board imperfections (Inverse Problem II).
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• paper property modifications;
• fluting geometry deviations;
• paper processing artifacts.

To represent these imperfections, controlled changes were intro
duced in the FE models, including slight variations in the material 
parameters—thickness and Young’s moduli—of all paper layers, as well 
as minor deviations in wave geometry, specifically amplitude and 
wavelength. The magnitude of these variations was set to ± 5 %, 
resulting in pseudo-experimental force–displacement curves that mimic 
the variability observed in real tests, while maintaining full control over 
unknown factors. All types of imperfections were introduced simulta
neously in the analysis to increase the difficulty of identifying the true 
cardboard parameters. A comprehensive discussion of how such im
perfections affect the structural response of corrugated board can be 
found in the study by Mrówczyński et al. [45].

2.1.2. Inverse Problem i – Inverse identification of effective stiffness 
parameters

A shell-based numerical models of cardboard selected (i.e., without 
explicit corrugated geometry) was constructed for each test configura
tion, for more details see Section 2.3. The material input for the models 
representing the constitutive behavior of the board used was defined 
through ABDR stiffness matrix (plane stress membrane, bending and 
shear components known from the standard plate and shell theories of 
orthotropic materials) according to previous works of the group 
[9,30,33–35,45,46].

The board mechanical response in Inverse Problem I was optimized 
using a gradient-based inverse procedure (primal–dual interior-point 
method) combined with least-squares fitting, adjusting the elements of 
the ABDR stiffness matrix. The goal was to iteratively minimize the 
discrepancy between pseudo-experimental (from 3D FE models, but, in 
general, from real experimental tests) and numerical (from 2D FE 
models) curves of test outcomes, allowing for an implicit capture of the 
imperfection effects. For both models the representative so-called 
“board performance vector” was defined to be used in least-square 
fitting (design parameters defined in Section 2.6). The initial design 
parameters were taken from ideal case of board used, i.e. without 
production-related imperfections. Finally, in Inverse Problem I, the 
converged solution represented the board with deteriorated properties 
due to converting, expressed via ABDR stiffness matrix. Since this form 
is not practically useful, in Inverse Problem II, the numerical homoge
nization was employed to iteratively retrieve the effective properties of 
the papers and board geometry.

2.1.3. Inverse Problem II – Numerical homogenization and iterative 
parameter adjustment

In the Inverse Problem II, a separate RVE model was constructed 
using initial paper material properties and ideal fluting geometry (with 
no imperfections), please follow Fig. 1(b). Initial parameters are ideal, i. 
e., the real-world production effects are excluded. Numerical homoge
nization was applied to compute the board effective parameters, see 
Section 2.5, to be used in the Inverse Problem II, for the purpose of 
accounting for manufacturing-induced deviations of ideal material 
properties of papers and board geometry.

Also, to include the ECT index in assessing material properties of the 
board, its influence was incorporated using an analytical-empirical 
approach, based on findings from a recent study [47]. Its reference 
value including real world imperfections comes from the ECT full 3D FE 
model, see Fig. 1(b). Analytical-empirical approach used was briefly 
described in Section 2.4.

Same as in the previous stage, an iterative inverse procedure was 
then applied to modify the paper material properties and fluting ge
ometry. The iteration process continued until the homogenized stiffness 
parameters matched to those from Inverse Problem I and the outcome of 
the analytical-empirical model of ECT matched to ECT result from 3D FE 

model. The final, converged parameters are considered to be the effec
tive material properties of paper and fluting geometry, which includes 
the real-world production-related imperfections through inverse-based 
multi-step mechanical characterization.

The details of mathematical approach used for minimizations of cost 
functions, both used in Inverse Problem I and II, were presented in 
Section 2.6.

2.1.4. Using artificial intelligence to speed up the process
In order to enable fast predictions, which could be used at corrugated 

board plant, the methodology proposed in this study may also utilize an 
Artificial Neural Network (ANN) as a surrogate for the computationally 
expensive finite element analyses, particularly in Inverse Problem I. 
Using ANN can be especially beneficial in applications such as quality 
control or box design optimization. Specifically, in Inverse Problem I, 
the ANN surrogate is used to predict the board performance vector based 
on the ABDR stiffness matrix. Section 2.7 provides details on the 
implementation and validation of the ANN model used in the study.

2.2. Mechanical testing of corrugated board

In the proposed methodology, the material properties of the boards 
should be acquired through mechanical tests of the laboratory condi
tioned samples. However, as a first step of verifying this methodology, 
the pseudo-experimental approach was used in the study. Despite, this 
fact the recommended and used in numerical approach mechanical tests 
were described in this Section to provide the reader with a clear un
derstanding of the tests employed.

Set of corrugated board samples have to be tested in laboratory 
conditions, i.e., according to TAPPI guidelines (23 ◦C temperature and 
50 % relative humidity) [48,49]. In the methodology, the following 
experimental procedures for identifying the board properties are used: 

• ECT, see Fig. 2(a);
• BNT-MD and BNT-CD, see Fig. 2(b);
• TST-MD and TST-CD, see Fig. 2(c);
• SST, see Fig. 2(d).

Bending stiffness is measured using the four-point bending method. 
A sample 50x250 mm is loaded in such a way that a constant bending 
moment and zero shear force occur between the inner supports. How
ever, a shear force remains present between the outer and inner sup
ports, which allows the test to also account for shear stiffness. Bending 
tests are conducted along both the machine direction and cross-machine 
direction, at a speed of 37.5 mm/min.

The edge crush test measures the compressive strength of a 25x100 
mm sample (typically thicker than 1 mm) when loaded along its edge. 
For more slender specimens, failure tends to occur due to loss of stability 
rather than material crushing. ECT is one of the most widely recognized 
and practically important parameters used in both analytical and nu
merical evaluations of corrugated packaging load capacity. The test is 
performed in the cross direction at a speed of 12.5 mm/min.

Shear stiffness is determined using a sample of 85x85 mm, diago
nally loaded at opposite corners. Displacements and reaction forces 
measured at the remaining corners are used to calculate the shear 
stiffness. Only the linear part of the force–displacement curve is used in 
identifying the SST parameter. While SST results are sensitive to 
crushing, they remain reliable even when the samples are significantly 
damaged.

The torsional stiffness test involves twisting a 30x150 mm sample by 
a few degrees in both directions. Only the linear segment of the tor
que–angle curve is considered in evaluating torsional stiffness. Accurate 
results are ensured by stable sample mounting, a static method for 
measuring angle and torque, and the relatively large width of the sam
ple, which promotes homogenized material behavior. These tests are 
conducted in both MD and CD directions.
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To obtain statistically representative results, five sets of samples 
should be used for each type of board, assuming a consistent paper 
sheets (including source supplier) and identical testing conditions. Each 
sample must be visually inspected to exclude potential damaged or 
distorted sample.

Only bending and torsion tests are conducted both in the machine 
direction (along the board flutes) and in the cross-machine direction 
(perpendicular to the flutes). The testing speed for ECT is set to 12.5 

mm/min, in accordance with FEFCO Testing Method No. 8 [50]. For 
TST, the applied angular velocity is 0.03 rad/s, while for BNT and SST, 
the testing speed is 37.5 mm/min, therefore all tests may be considered 
as quasi-static. In Fig. 3, the boundary conditions and loading of card
board samples in laboratory tests are shown.

(a) (b)

(c) (d)

Fig. 2. Test setups used in the experimental study: (a) edge crush test, (b) bending stiffness test, (c) torsion stiffness test and (d) shear stiffness test.

(a)

(b) (c) (d)

Fig. 3. Sample loading schemes for: (a) bending test, (b) edge crush test, (c) shear stiffness test, and (d) torsional stiffness test.
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2.3. Finite element modeling of mechanical tests

Numerical models of the cardboard samples were created using 
commercial FE software (Abaqus Unified FEA software [51]). In Fig. 3, 
the load schemes applied in all laboratory tests are presented. The di
mensions of the samples were: 50x250 mm in the 4-point bending test, 
25x100 mm for the ECT, 85x85 mm in the SST, and 30x150 mm for the 
torsional stiffness test. Both the 4-point bending and torsional tests were 
conducted in the machine and cross directions of the cardboard.

The study used B-flute corrugated cardboard with a flute height of 
2.46 mm and a period length of 6.5 mm. The 3D model of the cardboard 
consisted of three paper layers, each assigned material properties listed 
in Table 1, where t is the thickness, E1 and E2 are the Young’s moduli in 
machine and cross directions, ν12 is the Poisson’s ratio, G12 is the in- 
plane shear modulus, G13 and G23 are the transversal shear moduli, 
and σ0 is the yield strength. These material parameters were also used in 
the homogenization process to determine the effective stiffness values. 
The obtained stiffnesses were then applied as material data in the 
simplified 2D models of the corrugated board.

In all numerical analyses, the four-node quadrilaterals shell elements 
with full integration (S4 elements, from Abaqus element library) were 
assumed. In 3D cardboard models, the FE mesh size was equal to 0.5 
mm, 3 mm in simplified 2D shells, and 0.2 mm for the RVE models in the 
homogenization procedure. The results of the numerical analyses in 
BNT-MD, BNT-CD, ECT and SST were the reaction forces at the supports, 
and the torque in the TST-ND and TST-CD.

2.4. Analytical-empirical ECT model

The analytical-empirical determination of the ECT value combines 
precise theoretical modeling with corrections based on real-world ob
servations of corrugated board behavior. In practice, cardboard samples 
rarely exhibit ideal structural properties – material and structural im
perfections often occur, significantly influencing compressive strength. 
Therefore, a purely analytical approach may overestimate the actual 
mechanical performance. To address this, an analytical-empirical model 
is used [47], incorporating both local strength parameters and the ef
fects of buckling in the paper layers. Therefore, the ECT value was 
calculated from the following formula: 

ECT =
∑n

i=1
SCTi⋅αi⋅γi , (1) 

where SCTi is the short-span compression test value of the i-th paper, αi 
is the take-up factor of each layer and γi is the parameter reducing the 
static load capacity on compression of each paper layer. This reduction 
factor is crucial as it includes the buckling behavior of the individual 
layers, which significantly limits their load-bearing capacity in real 
conditions. It can be determined from: 

γi = SCTi
− 0.5

(
H
a

gi

bi

)0.5

≤ 1 , (2) 

where H is the height of the cross-section, a is the empirical parameter, gi 
is the grammage of the individual paper, and bi is the buckling length of 
i-th layer. The parameter a was assumed in accordance with the work of 
Garbowski et al. [47], which value for three-layer cardboards is equal to 

52. In Fig. 4, the buckling lengths of the paper layers and the height for 
three-layer corrugated board are presented. In Table 2, the material 
parameters used for the analytical-empirical determination of the ECT 
value of the cardboard are listed.

2.5. Numerical homogenization of corrugated board

In the study, the numerical homogenization was used in order to 
model the mechanical behavior of corrugated paperboard. The method 
used here was proposed by Biancolini [8] and later extended by Gar
bowski and Gajewski [9]. In the method, the equivalence of strain en
ergy between the full (3D) structure, i.e. representative volume element 
of corrugated paperboard and the simplified shell (2D) model is utilized. 
Periodically repeating segment of the full structure is used as RVE. The 
purpose is to simplify RVE to a single shell element with one layer in 
such a way that the overall behavior of the models, RVE and 2D, are the 
same. The key assumptions of the described method are presented 
below; more details may be found in [9].

Displacements at the nodes of the computational mesh can be 
determined using the Finite Element Method (FEM). The typical equa
tion for FEM analysis takes the following form for external nodes of RVE: 

Keue = Fe (3) 

in which, Ke is the global stiffness matrix with application of static 
condensation for the external RVE nodes; ue is the displacement vector 
at the external nodes; Fe is the nodal force vector applied to the external 
nodes.

In order to neglect, the internal nodes of the RVE model, the static 
condensation is used for deriving the global stiffness matrix. The un
knowns of the FEM system of equation are reduced to selected degrees of 
freedom, what greatly limits the computational cost. During homoge
nization process the stiffness matrix is computed only for external nodes 
by eliminating internal nodes: 

Ke = Kee − KeiK− 1
ii Kie (4) 

Subscript e states for external nodes, while subscript i states for internal 
nodes.

In the method, the strain energy function takes the following form: 

E =
1
2
uT

e Fe =
1
2
uT

e Kue (5) 

The relations between nodal forces and nodal displacements reads: 
[

Kee Kei
Kie Kii

][
ue
ui

]

=

[
Fe
0

]

(6) 

Table 1 
Mechanical and physical parameters of papers.

No. t E1 E2 ν12 G12 G13 G23 σ0

(mm) (MPa) (MPa) (–) (MPa) (MPa) (MPa) (MPa)

1 0.16 5600 2800 0.41 1550 100 80 13.8
2 0.13 5400 2600 0.42 1450 90 70 11.4
3 0.16 5600 2800 0.41 1550 100 80 13.8

Fig. 4. Cross-section of three-layer cardboard.
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To achieve the equilibrium between 3D model and 2D model proper 
nodal displacements are required by taking into consideration the 
bending and membrane behavior through homogenization. It is essential 
to relate the displacements and strains in the following way: 

u = Hnε (7) 

in which, Hn is computed for each node, namely: 

⎡

⎢
⎢
⎢
⎣

ux

uy

uz

θx

θy

⎤

⎥
⎥
⎥
⎦

n

=

⎡

⎢
⎢
⎢
⎢
⎣

x o y/2
0 y x/2
0 0 0
0 0 0
0 0 0

xz 0 yz/2 z/2 0
0 yz xz/2 0 z/2

− x2/2 − y2/2 − xy/2 x/2 y/2
0 − y − x/2 0 0
x 0 y/2 0 0

⎤

⎥
⎥
⎥
⎥
⎦

n

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εx

εy

γxy

κx

κy

κxy

γxz

γyz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n

(8) 

Now, after [8,9], if we get back to the strain energy, we obtain the 
following: 

E =
1
2

εT
e HT

e KHeεe (9) 

what may be simplified to the form: 

E =
1
2

εT
e Hkεe{area} (10) 

in which: 

Hk =
HT

e KHe

area
(11) 

The matrix obtained, Hk represents the stiffness matrices corresponding 
to compression/tension, bending, coupling, and transverse shear stiff
nesses, denoted as A3×3,B3×3,D3×3 and R2×2, respectively: 

Hk =

⎡

⎣
A3×3 B3×3 0
B3×3 D3×3 0

0 0 R2×2

⎤

⎦ (12) 

2.6. Inverse problem formulation and optimization strategy

The mechanical characterization and microstructural identification 
of corrugated cardboard structures were approached through a two- 
stage inverse problem, each formulated as a nonlinear constrained 
optimization task.

2.6.1. Calibration of simplified plate model (ABDR stiffness identification)
In the first stage (Inverse Problem I), a simplified homogenized 

model of the corrugated cardboard plate was calibrated to reproduce the 
mechanical behavior observed in detailed three-dimensional (3D) FE 
simulations. These 3D simulations accounted for structural imperfec
tions such as local buckling of the fluting, small variations in material 
stiffness, and geometric irregularities, aiming to mimic realistic 
manufacturing conditions.

The goal of this stage was to identify the effective components of the 
ABDR stiffness matrix (plane stress membrane, bending and shear 
components known from the standard plate and shell theories of 
orthotropic materials): 

{A11,A22,A12,A33,D11,D22,D12,D33,R4,R5} (13) 

by minimizing the discrepancy between theoretical predictions of 
simplified plate tests and the results obtained from full 3D FE analyses. 
The mechanical tests considered were described in Chapter 2.2:

The optimization problem was formulated as 

min
x

f(x) (14) 

where x is the vector of ABDR stiffness parameters and f(x) is the 
objective function defined as: 

f(x) =
∑5

i=1
wi
(
σ2D

i (x) − σ3D
i

)2 (15) 

where: 

• wi are the weighting factors assigned to each test,
• σ2D

i (x) denotes the theoretical response predicted by the simplified 
plate model,

• σ3D
i denotes the corresponding response obtained from the 3D FE 

simulations.

The optimization was constrained by physically meaningful bounds 
on the stiffness parameters: 

lx ≤ x ≤ ux (16) 

and was solved using a primal–dual interior-point method with Conju
gate Gradient (CG) subproblem solver, finite-difference gradient ap
proximations, and multiple initial guesses (multi-start strategy) to 
mitigate the influence of local minima.

The calibration yielded a set of reference ABDR stiffness values Sref , 
which were then used in the second inverse problem.

2.6.2. Identification of corrugated layer geometry and material properties
In the second stage (Inverse Problem II), the geometrical parameters 

of the corrugated layer and the material properties of the constituent 
paper layers (top liner, bottom liner, and fluting) were identified. The 
aim was to reconstruct the microstructural features that would generate 
the previously identified reference stiffness values Sref .

The design variables in this stage included: 

• fluting geometry:
wave period P,
wave height H;

• material properties for each layer:
– thickness TH,
– Young’s modulus in MD (EMD),
– Young’s modulus in CD (ECD).

The optimization problem was formulated as: 

min
y

g(y) (17) 

where y is the vector of geometrical and material parameters, and g(y) is 
the objective function defined as: 

g(y) =
∑11

j=1
γj

(
Smodel

j (y) − Sref
j

)2
(18) 

where: 

Table 2 
Material parameters for analytical-empirical calculation of the ECT.

No. SCT α g b

(N/mm) (–) (g/m2) (mm)

1 2.2 1.00 120 6.5
2 1.5 1.32 120 4.1
3 2.2 1.00 120 6.5
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• Smodel
j (y) represents the ABDR stiffness components predicted by the 

analytical or semi-analytical model,
• Sref

j are the reference values identified in previous stage,
• γj are weighting coefficients associated with each stiffness 

parameter.

As in the first stage, box constraints ensured realistic values of the 
physical parameters: 

ly ≤ y ≤ uy (19) 

2.6.3. Solution strategy
A primal–dual interior-point method was employed to solve both 

optimization problems. This approach, originally introduced by Fiacco 
and McCormick [52] and further developed by Byrd, Hribar, and 
Nocedal [53,54] and relies on minimizing a barrier-augmented 
Lagrangian function: 

L (x, λ,μ) = f(x)+
∑

j
λjcj(x)+

∑

k
μkceqk(x) (20) 

where λ and μ are the Lagrange multipliers for inequality and equality 
constraints, respectively.

Inequality constraints were enforced through the addition of loga
rithmic barrier functions: 

fbarrier(x) = f(x) − μ
∑

j
ln
(
xj − lj

)
− μ

∑

j
ln
(
uj − xj

)
(21) 

where μ is a positive barrier parameter gradually reduced during the 
optimization process.

The optimization algorithm used the CG) method to solve the sub
problems arising at each iteration, facilitating efficient computation 
even for larger-scale parameter spaces. Finite differences with a fixed 
step size were used for numerical gradient approximations, ensuring 
stable derivative estimates.

The optimization procedure was guided by the following conver
gence criteria: 

• an optimality tolerance on the first-order optimality conditions 
(
10− 6);

• a step tolerance on the design variables 
(
10− 4);

• a finite difference step size for gradient approximations 
(
10− 3);

• a constraint violation tolerance 
(
10− 6).

The solution process was initialized from multiple starting points, 
following a multi-start strategy, to reduce the risk of convergence to 
local, suboptimal minima. The final identified parameters were those 
associated with the global minimum of the objective function among all 
optimization runs.

2.7. Ann-based prediction of effective material properties

A part of the calculation procedure related to prediction of the 
effective material properties can be replaced by the ANN-based model as 
presented in Fig. 5. In such the ANN-based model, the input data are 

elements of the ABDR stiffness matrix (10 inputs), and the output vector 
consists of the effective material properties from mechanical tests 
described in Chapter 2.2, i.e. BNT in MD, BNT in CD, TST in MD, TST in 
CD and SST.

The optimization procedures are very time-consuming due to mul
tiple runs of the cost function, which can require performing FE com
putations, as we propose in this study. However, the numerical 
simulations can be replaced by the ANN-model trained using the data 
from these simulations. In the literature, one can find some examples for 
predicting the strength of specific structures and materials, e.g., the 
ultimate axial strengths of concentrically loaded concrete-filled steel 
tubular columns strengthened with carbon fiber-reinforced polymer 
[55], the bond strength between steel reinforcement and concrete [56], 
the shear strength of fiber reinforcement bars concrete beams [57], the 
compressive strength of masonry [58], the tensile strength of fiberglass 
polymer composites [59]. In this paper, the ANN-based model is 
employed to predict the performance parameters of converted board. 
The model was trained using the data from 2D shell model calculations 
(described in Section 2.3). In this way, the optimization process can be 
much faster.

In this study, a feedforward multilayered ANN with 2 hidden layers 
was employed, see Fig. 6. The model has 10 inputs and 5 outputs. Each 
hidden layer consists of 10 neurons with tangent sigmoid transfer 
function. The output layer consists of 5 neurons with linear transfer 
function as 5 outputs of the ANN-model are calculated (effective mate
rial parameters). The data used for training was divided into training, 
validation, and tests sets. In general, the training and validation sets are 
used during the training process. The training set is used directly to train 
the ANN, while the validation set allow to stop the training process at 
the right moment in order to avoid the overfitting of the ANN-model. 
Using the trained ANN-based model instead of numerical simulations 
can speed up the calculation process.

3. Results and discussion

3.1. Inverse problem i – Identification of the ABDR stiffness parameters

The first inverse problem (IP1) aimed to identify the effective stiff
ness components of the ABDR matrix for a homogenized corrugated 
cardboard plate, based on synthetic reference data. These reference 
values originated from a perturbed 3D finite element model incorpo
rating realistic imperfections such as 5 % variability in material stiff
nesses and geometrical dimensions. The optimization was initialized 
using stiffness values computed for the idealized geometry (i.e., without 
imperfections).

The vector of design variables included ten independent components 
of the ABDR matrix: 

{A11,A22,A12,A33,D11,D22,D12,D33,R4,R5} (22) 

3.1.1. Convergence behavior
The optimization process exhibited a smooth and monotonic reduc

tion in the objective function value, spanning nearly six orders of 
magnitude (from 1 to below 10− 6) as shown in Fig. 7. This indicates 
both the accuracy of the inverse model and the numerical stability of the 
algorithm used.

3.1.2. Evolution of the identified parameters
Figs. 8 and 9 illustrate the evolution of raw and normalized stiffness 

parameters, respectively. All components gradually stabilized after 
approximately 40–50 iterations. Several stiffness components experi
enced significant changes compared to their initial (idealized) values. 

• Membrane stiffness components A11,A22,A33 increased by more than 
100 %, indicating low sensitivity or strong compensation for geo
metric and material imperfections.

Fig. 5. Replacement of the board performance calculations by ANN model.
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• Bending stiffness components D11,D22,D12,D33 exhibited relatively 
modest changes (within 30 %).

• Shear stiffness components R4 decreased, reflecting the softening of 
transverse shear behavior due to out-of-plane imperfections.

3.1.3. Sensitivity analysis
The parameter sensitivity was evaluated at each iteration and is sum

marized using box plots in Fig. 10. The distribution shows that the bending 

stiffness terms—especially D33,D22—consistently had the highest influence 
on the objective function. Membrane stiffnesses Aij showed negligible sensi
tivity throughout, which may be explained by the dominance of bending de
formations in the loading configurations used. Interestingly, the shear terms 
R4 and R5 exhibited wide spread (outliers present), indicating moderate but 
variable influence depending on the iteration step. These findings are 
consistent with the results of Garbowski et al. [60], who demonstrated via 
designed experiments that the effective mechanical response of corrugated 
boards is governed predominantly by bending and transverse shear behavior, 
with relatively minor contribution from membrane terms.

3.1.4. Discussion
The optimization procedure successfully recovered the effective 

ABDR stiffness matrix that replicates the behavior of a realistic, per
turbed 3D model using only simplified plate-level parameters. The 
strong deviation between the final and initial parameter values confirms 
the critical importance of calibration, especially when imperfections or 
nonlinearities are present at the microscale.

The steep and stable convergence of the objective function (Fig. 7), 
along with coherent parameter trends (Figs. 8–9), confirms that the 
solution is robust and well-posed. The observed low sensitivity of in- 
plane stiffness terms and high sensitivity of bending terms further sup
ports the use of inverse identification focused on bending-dominated 
tests.

Finally, the effectiveness of the approach was confirmed through 
multiple initializations (see Table 3), which all converged to consistent 
solutions with only minor variance (within 5 %), reinforcing the 
uniqueness and reliability of the identified stiffness vector.

Additionally, the sensitivity analysis conducted during optimization, 
averaged over all iterations, reveals that the most influential parameters 
were D33, D22, and D12. This observation aligns closely with the findings 
reported by Garbowski et al. [60], where a systematic sensitivity anal
ysis demonstrated that bending stiffnesses and bending-twisting 
coupling terms are the dominant factors influencing the global me
chanical response of corrugated structures. The consistency between our 

Fig. 6. ANN-based model for prediction of effective material properties.

Fig. 7. Convergence history of the objective function during inverse identifi
cation of ABDR stiffness parameters – Inverse Problem I.
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optimization-based sensitivity trends and those independently obtained 
via designed sensitivity experiments further validates the robustness and 
physical realism of the inverse identification process presented herein.

3.2. Inverse problem II – Identification of the microstructural parameters

In the second inverse problem (IP2a), the objective was to recon
struct the geometry and material properties of the corrugated board’s 
constituent layers based on the target stiffness values obtained in the 
first inverse problem (IP1). The identified target ABDR matrix served as 
a reference for calibrating a parameterized analytical model that takes 
as input the fluting geometry (period and height) and the mechanical 
parameters of the top liner, fluting, and bottom liner.

The full set of design variables included: \. 

• geometry: 
• fluting period P [mm]
• fluting height H [mm];

• layer 1 (top liner): 
• thickness TH1 [mm]
• Young’s moduli EMD

1 ,ECD
1 [MPa];

• layer 2 (fluting): 
• thickness TH2 [mm]
• Young’s moduli EMD

2 ,ECD
2 [MPa];

• layer 3 (bottom liner): 
• thickness TH3 [mm]
• Young’s moduli EMD

3 ,ECD
3 [MPa]

3.2.1. Convergence behavior
Fig. 11 presents the convergence of the objective function over the 

optimization process. A clear and rapid decrease is observed—from 
values exceeding 1.0 to less than 10− 2 within 25 iterations. The nearly 
monotonic trend, without erratic oscillations, indicates a well-posed 
problem and a stable descent direction within the interior-point opti
mization algorithm.

3.2.2. Parameter evolution
Fig. 12 shows the absolute values of all design variables throughout 

the optimization. Parameters are plotted with two y-axes: blue for ge
ometry and thicknesses [mm], and red for elastic moduli [MPa]. The 
optimization exhibits distinct stages: 

• a reduction in H (fluting height) followed by an increase in paper 
moduli (particularly EMD

3 ,EMD
2 ),

• strong adjustments in the fluting and bottom liner properties,
• rapid convergence of paper thicknesses after 10–15 iterations.

Fig. 13 presents the same evolution in normalized form, offering 
clearer insight into the relative magnitude of parameter changes. 
Notably: (i) EMD

2 decreases by nearly 70 %, (ii) H fluctuates mildly, (iii) 
most other parameters converge within ± 5 % of their initial values.

3.2.3. Sensitivity analysis
The sensitivity analysis (Fig. 14) reveals that the most influential 

parameter throughout the optimization was the fluting height H. It 
consistently showed the highest median sensitivity and wide variability, 
indicating its dominant role in adjusting the out-of-plane stiffness. Other 
influential parameters include: (a) EMD

1 , ECD
2 , and EMD

3 , (b) modest 

Fig. 8. Evolution of raw ABDR stiffness parameters across optimization iterations.

Fig. 9. Evolution of normalized ABDR stiffness parameters relative to their 
initial values.
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influence from thicknesses TH2, TH3, (c) low influence from ECD
1 , ECD

3 , 
and P.

This profile confirms that while geometry—particularly wave 
height—drives the global bending stiffness, the material properties in 
MD direction of fluting and liners act as fine-tuning elements.

3.2.4. Discussion
The results of the second inverse problem (IP2) confirm that it is 

possible to reliably reconstruct the microstructural parameters of 
corrugated board by calibrating a simplified analytical model to match 
global stiffness characteristics. The optimization process demonstrated 
good numerical conditioning, as evidenced by the smooth and mono
tonic convergence of the objective function. The recovered parameter 
set yields an effective stiffness matrix that closely approximates the 

Fig. 10. Box plot of parameter sensitivities computed throughout the optimization iterations.

Table 3 
Identified ABDR stiffness parameters from IP1 optimization with multi-start initialization: mean values and standard deviations.

A11 A22 A12 A33 R4 R5 D11 D22 D12 D33

[N/mm] [Nmm]
4277.4 2754.1 915.1 1335.8 3269.5 1923.3 981.2 698.9 15.4 101.9
± 127.0 ± 79.8 ± 25.2 ± 38.9 ± 84.2 ± 51.6 ± 29.7 ± 20.9 ± 0.41 ± 2.81

Fig. 11. Objective function convergence during the identification of geometric 
and material parameters (logarithmic scale) – Inverse Problem II.

Fig. 12. Evolution of parameter values during optimization.
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target values previously identified through inverse homogenization in 
IP1.

The parameter evolution observed during optimization provides 
valuable insight into how different physical quantities influence the 
macroscopic behavior of the structure. The fluting height H emerged as a 
critical variable, undergoing noticeable adjustments and exhibiting the 
highest sensitivity across the iterations. This confirms its fundamental 
role in controlling bending stiffness and structural inertia, a fact long 
recognized in the mechanics of sandwich and corrugated panels. 
Although the fluting period P was free to vary, its influence was rela
tively minor in comparison, suggesting that under given geometric 
constraints, period variations play a secondary role in stiffness tuning.

Equally significant was the role of the elastic moduli in the machine 
direction (MD), particularly for the fluting and bottom liner layers. The 
optimizer adjusted these parameters in a coordinated way, effectively 
compensating for the limitations imposed by fixed or weakly sensitive 
geometric variables. In contrast, moduli in the cross direction (CD) 
showed lower sensitivities, except for the fluting layer where transverse 
stiffness appeared to affect the shear response of the plate. This agrees 
with physical intuition, as the fluting, being highly anisotropic and 
spatially curved, contributes disproportionately to both bending and 
shear stiffness components, especially those related to coupling effects.

An interesting observation is the relative stability of the thickness 
parameters. Although they were included in the design space, their 

Fig. 13. Normalized evolution of parameters during optimization (relative to initial values).

Fig. 14. Box plots of parameter sensitivities over the optimization history in IP2.
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influence was less pronounced than initially expected. This suggests 
that, within realistic bounds, the optimizer preferred to adjust stiffness 
by modulating the modulus rather than the cross-sectional dimensions. 
This behavior may reflect the nonlinear and geometry-sensitive scaling 
of flexural rigidity with respect to thickness, and possibly the smoother 
influence of modulus changes on the target stiffness metrics used in the 
objective function.

Furthermore, the consistency of parameter trajectories and the clear 
dominance of a few key variables in the sensitivity analysis underscore 
the well-posed nature of the inverse problem and the robustness of the 
adopted formulation. The optimization did not exhibit pathological 
behavior such as parameter drift or degeneracy, which often complicates 
inverse identification in over-parameterized systems. Instead, it 
converged to a physically meaningful and interpretable solution, in 
which fluting geometry and directional stiffnesses were adjusted in a 
balanced and effective manner. Importantly, the use of a multi-start 
strategy confirmed that the optimization consistently converged to the 
same solution (see Table 4), with only minor discrepancies attributable 
to the chosen convergence tolerances and stopping criteria.

Overall, the findings from IP2 strongly support the feasibility of 
using reduced-order plate models for back-calculating internal struc
tural parameters of corrugated cardboard. The results also illustrate the 
interdependence between geometry and material properties, and how 
these two domains interact within the optimization framework to 
minimize deviation from experimentally informed target stiffness 
values. This approach opens the door to more efficient characterization 
workflows in industrial or design settings, where full-scale 3D simula
tions or extensive experimental campaigns may be impractical.

3.3. ANN model performance results and discussion

In this study, it is proposed to replace the numerical simulations by a 
trained ANN in order to speed up the calculation during optimization 
process. Table 5 shows three variants of the tested ANNs for prediction 
of the effective material parameters. Variant 1 do not include any 
neuron in the hidden layer. It means that such ANN model has only the 
input layer with 10 inputs and the output layer with 5 neurons (each one 
related to one output – one material parameter). Variant 2 includes one 
hidden layer with 10 neurons while Variant 3 includes two hidden layer 
with 10 neurons at each hidden layer.

The training process of the ANN models were performed 100 times 
for each variant of the ANN structure. The Levenberg-Marquardt method 
was adopted as the training procedure. The dataset used for training 
contained 2000 cases coming from numerical simulations and was 
divided into training set (1400 cases), validation set (300 cases), and test 
set (300 cases). In order to evaluate the performance of the ANN the root 
means squared error (RMSE) is defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(ŷ − y)2

N

√
√
√
√
√

(23) 

where ŷ denotes the expected value of the ANN output, y is the obtained 
value of the ANN output and N is the number the data for testing. After 
100 times training processes, the average values of the ANN perfor
mance for each output for three variants of the ANN structures are 
presented in Table 6. One can conclude that each tested ANN model 
gives very accurate results, while the best one are obtained for the 

Variant 3 with 2 hidden layers.
In all previous tests, the tangent sigmoid was applied as the transfer 

function in the hidden layers. Now, the transfer function employed can 
be tested. The number of neurons was the same as in Variant 3 (10 
neurons both at the first and second hidden layers). We applied the 
following transfer functions in the hidden layers: 

• Variant 4 – linear function,
• Variant 5 – logistic function,
• Variant 6 – ReLU (Rectified Linear Unit).

In the output layer, the linear function was kept as the transfer 
function. The results are shown in Table 7. One can notice that the best 
results were obtained for Variant 4 (with linear transfer functions in 
hidden layers). However, the results are very close to the results ob
tained for Variant 3 (with tangent sigmoidal transfer functions in hidden 
layers).

The speed-up benefit of using ANN was evaluated based on 100 
representative cases. The average computation time for the ANN model 
was 0.0037 s, compared to 24.5 s for the corresponding FE model 
computations. This result demonstrates a substantial computational 
advantage of the ANN model over the traditional FE approach, with an 
average speed-up factor of approximately 6600 times. Such a dramatic 
reduction in computation time is beneficial for applications requiring 
real-time or large-scale simulations, such as optimization tasks, uncer
tainty quantification, or integration into digital twin frameworks, what 
perfectly fits the methodology presented in this paper.

4. Conclusions

This study introduced a novel inverse-based, multi-step numerical 
homogenization framework for the mechanical characterization of 
converted corrugated board, accounting for both the anisotropy and 
imperfections induced during production. By combining detailed 3D 
finite element simulations, simplified homogenized shell models, and 
optimization-based inverse analyses, the proposed methodology enables 
the derivation of effective stiffness parameters that realistically reflect 
conversion-related issues such as micro-damage, adhesive effects, and 
geometric irregularities.

The two-stage inverse procedure successfully retrieved the compos
ite stiffness matrix of the converted board, showing important de
viations from the idealized configuration. This highlights the necessity 
of considering production-related imperfections in computational 
modeling. The iterative updating of fluting geometry and paper prop
erties using numerical homogenization allowed for accurate calculation 
of real-world board characteristics, proving that indirect inverse 

Table 4 
Identified geometric and material parameters from IP2 optimization with multi-start initialization: mean values and standard deviations.

P H TH1 TH2 TH3 EMD1 ECD1 EMD2 ECD2 EMD3 ECD3

[mm] [MPa]
6.18 2.47 0.168 0.136 0.168 5878.7 2939.2 1643.1 2729.3 5878.7 2939.2
± 0.17 ± 0.07 ± 0.005 ± 0.004 ± 0.005 ± 166.4 ± 81.1 ± 47.9 ± 77.9 ± 167.3 ± 83.5

Table 5 
Structure of artificial neural network models with tangent sigmoidal transfer 
functions in hidden layers and linear transfer function in the output layer.

Number of neurons in the first 
hidden layer

Number of neurons in the second 
hidden layer

Variant 
1

0 0

Variant 
2

10 0

Variant 
3

10 10

T. Garbowski et al.                                                                                                                                                                                                                             Composite Structures 373 (2025) 119701 

13 



approaches can effectively replace or supplement physical experiments.
Sensitivity analyses revealed that fluting height and period have a 

dominant influence on the board’s mechanical performance, also 
bending behavior shown its critical role in design and optimization.

Furthermore, the study in the paper, shows that the incorporation of 
an artificial neural network significantly reduces computational time 
without compromising prediction accuracy. This makes the methodol
ogy applicable in time-critical applications such as digital twin envi
ronments, optimization loops or online laboratory/production 
performance predictions of cardboards.

The proposed framework is not limited to a specific board configu
ration or test type and could be extended to other layered or structurally 
complex materials. In summary, the study offers a reliable and compu
tationally efficient method for characterizing the mechanical properties 
of converted corrugated board, which can be one of the tools for more 
innovative design, analysis, and simulation practices in the packaging 
industry.
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[23] Waszczyszyn Z, Ziemiański L. Neural networks in mechanics of structures and 
materials – new results and prospects of applications. Comput Struct 2001;79 
(22–25):2261–76. https://doi.org/10.1016/S0045-7949(01)00083-9.

[24] Buljak V, Cocchetti G, Cornaggia A, Garbowski T, Maier G, Novati G. Materials 
Mechanical Characterizations and Structural Diagnoses by Inverse Analyses. In: 
Voyadjis GZ (ed) Handbook of Damage Mechanics. 2015, New York, USA: 
Springer. 619-642. Doi: 10.1007/978-1-4614-5589-9_33.

[25] Garbowski T, Maier G, Novati G. On calibration of orthotropic elastic-plastic 
constitutive models for paper foils by biaxial tests and inverse analyses. Struct 
Multidiscip Optim 2012;46(1):111–28. https://doi.org/10.1007/s00158-011- 
0747-3.

[26] Östlund S, Niskanen K (Eds). Mechanics of Paper Products. 2021, Amsterdam, The 
Netherlands: De Gruyter.

[27] Nienke T, Kwade A, Eggerath D. Influence of moisture, temperature and bleaching 
on the mechanical properties of coated fiber-based substrates. Coatings 2022;12 
(9):1287. https://doi.org/10.3390/coatings12091287.

[28] Wang D. Elastic modulus prediction of corrugating medium under different 
temperature and relative humidity. IOP Conf Ser: Mater Sci Eng 2018;439(4): 
042043. https://doi.org/10.1088/1757-899X/439/4/042043.
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[33] Cornaggia A, Mrówczyński D, Gajewski T, Knitter-Piątkowska A, Garbowski T. 
Advanced numerical analysis of transport packaging. Appl Sci 2024;14(24):11932. 
https://doi.org/10.3390/app142411932.

[34] Garbowski T, Gajewski T, Grabski JK. Estimation of the compressive strength of 
corrugated cardboard boxes with various openings. Energies 2021;14(1):155. 
https://doi.org/10.3390/en14010155.

[35] Garbowski T, Gajewski T, Grabski JK. Estimation of the compressive strength of 
corrugated cardboard boxes with various perforations. Energies 2021;14(4):1095. 
https://doi.org/10.3390/en14041095.

[36] Suarez B, Muneta MLM, Sanz-Bobi JD, Romero G. Application of homogenization 
approaches to the numerical analysis of seating made of multi-wall corrugated 
cardboard. Compos Struct 2021;262(4):113642. https://doi.org/10.1016/j. 
compstruct.2021.113642.

[37] Beck M, Fischerauer G. Modeling warp in corrugated cardboard based on 
homogenization techniques for in-process measurement applications. Appl Sci 
2022;12(3):1684. https://doi.org/10.3390/app12031684.

[38] Tanninen P, Leminen V, Kainusalmi M, Varis J. Effect of process parameter 
variation on the dimensions of press-formed paperboard trays. BioResources 2016; 
11(1):140–58. https://doi.org/10.15376/biores.11.1.140-158.

[39] Garbowski T, Gajewski T, Mrówczyński D, Jędrzejczak R. Crushing of single-walled 
corrugated board during converting: experimental and numerical study. Energies 
2021;14(11):3203. https://doi.org/10.3390/en14113203.

[40] Johst P, Kaeppeler U, Seibert D, Kucher M, Böhm R. Investigation of different 
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