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This paper presents a two-step inverse-based numerical homogenization framework for the mechanical char-
acterization of converted corrugated board. The methodology combines high-fidelity 3D simulations with global
plate modeling, enabling the extraction of homogenized stiffness parameters that account for imperfections such
as fluting flattening and local degradation of paper properties during converting processes. In the first step, a 3D
finite element model of a corrugated structure is perturbed to simulate realistic imperfections. The mechanical
response is computed for multiple loading conditions. A simplified homogenized plate model is then calibrated
using inverse optimization to match the 3D response, resulting in an identified plane stress membrane, bending
and shear components known from the standard plate and shell theories of orthotropic materials In the second
step, these reference stiffness values are used to inversely identify the geometric and material parameters of the
constituent layers. The design variables include fluting geometry and the thickness and orthotropic elastic
properties of each paper layer. The optimization reveals which parameters have the strongest influence on global
behavior, offering insights into process sensitivity. The proposed method provides a robust and efficient path
from microstructural features to global mechanical performance, suitable for design and quality control in in-
dustrial packaging applications. The framework may also be extended using neural networks for rapid estima-
tion, enabling integration into broader simulation pipelines.

homogenization is a well-established approach, employed to estimate
the effective macroscopic behavior of materials with complex micro-
structures. In the context of layered or periodic structured natural/

1. Introduction

Corrugated board is one of the most widely used materials in the

packaging industry due to its excellent strength-to-weight ratio, low
cost, and recyclability [1-3]. The most common three-layered board is
typically composed of a fluted corrugated core sandwiched between two
flat linerboards, resulting in a lightweight structure with complex me-
chanical behavior. The anisotropic nature of the material [4], along with
the influence of the geometric configuration and constituent material
properties, makes its mechanical characterization a nontrivial task
[1,5,6]. Therefore, special numerical techniques must be used, such as
numerical homogenization.

From a general viewpoint, in computational mechanics, numerical

artificial materials, such as corrugated board, classic homogenization
techniques such as the asymptotic expansion method, first-order and
higher-order periodic homogenization, and RVE modeling are
commonly employed; some application examples can be found in
[7-10], specifically for corrugated board panels and packages. These
approaches allow a reduction in computational complexity by
substituting the detailed microstructure with a homogeneous equivalent
model, while offering and effective, sufficient level of mechanical de-
tailing and structural behavior description. In particular, for computa-
tional modeling of shell-like structures, such as those typically employed
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in corrugated board structural components, first-order homogenization
methods have been proposed, among others, by Buannic et al. [11],
Biancolini and Butti [8], and Talbi et al. [12]. Further developments
have been searched, for higher-order homogenization, with effective
more refined modeling by Tran et al. [13], Al Jahwari and Naguib [14],
and Khakalo and Niiranen [15]. Relevant application examples of such
homogenization strategies can be additionally found, with specific focus
to the asymptotic expansion method (see, e.g., [16,17]), and to RVE
modeling (see, e.g., [18,19]).

For corrugated board materials, various numerical and analytical
homogenization approaches have been developed. Early models used
beam or shell theories to represent the fluted layer, coupled with
equivalent orthotropic plate formulations for the entire structure [8].
More advanced methods incorporated 2D or 3D RVEs that explicitly
captured the corrugated geometry to extract stiffness tensors under
different boundary conditions [20]. However, such techniques are
typically limited to unconverted configurations of cardboards and are
not yet suitable to capture and assess imperfections or production
process-induced heterogeneities.

In order to delve into difficulties of structural assessment and iden-
tification, following another branch of computational mechanics, in-
verse methods aim at estimating unknown model parameters by
minimizing the error between simulated responses and experimental or
reference data (see, e.g., [21-23]). These methods have been extensively
applied in material modeling, particularly when direct measurement of
parameters is impractical (to complex or for innovative materials) or
when constitutive models need to account for multi-axial and highly
non-linear behaviors, e.g., anisotropy, plasticity, damage, fracture and
delamination [24,25].

Within such a framework, optimization-based inverse techniques,
including mathematical programming, artificial intelligence and
evolutionary algorithms, are often used in combination with finite
element (FE) simulations to perform model calibration. In multi-scale
problems, inverse methods have been applied to relate experimental
data with homogenized models, enabling parameter updates based on
macroscopic tests (see, e.g., [9]). This strategy makes them highly
suitable for the current context, where mechanical behavior may be
altered by conversion processes due to production of the cardboard and
is not directly inferable from constituent material data (see, e.g., [26]).

Numerous studies have addressed the mechanical modeling of
corrugated board under various loading conditions, such as tensile,
bending, shear, and compression, namely referring to tests such as: Edge
Crush Test (ECT), four-point Bending Tests (BNT) in both the Machine
(MD) and Cross-machine Directions (CD), Shear Stiffness Tests (SST),
and Transverse Shear Tests (TST). Cardboard models often highlight the
strong anisotropy of the material and the sensitivity of mechanical
behavior to the fluting geometry, paper grades, temperature, and rela-
tive humidity content [6,27-30]. Analytical and numerical homogeni-
zation methods have been used to simulate packaging structures, such as
boxes or panels, under realistic conditions (see, e.g., [31-371).

Nonetheless, modeling converted corrugated board introduces
additional challenges, both form mechanical and computational stand-
points. Conversion processes such as creasing, die-cutting, and folding
introduce local damage, stiffness degradation, and geometric disconti-
nuities [26,38]. Recent efforts have tried to capture these effects using
damage mechanics models or empirical degradation factors applied ad
hoc [39-43], although, such approaches typically are not generalizable
across different geometries or loading cases.

To address these limitations, a research path may integrate multi-
scale modeling with inverse parameter identification, allowing models
to adapt to changes in structural integrity introduced during conversion.
Still, most of these methods are in their early stages and are rarely
applied in a systematic, iterative framework like the one proposed in this
study. The literature highlights the growing need for homogenization
approaches that are both accurate and adaptable to real-world material
modifications. While classic homogenization techniques and inverse
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methods are individually well-established, their combination in a multi-
step framework delves toward an innovative approach, particularly for
complex layered systems like converted corrugated board. This research
addresses this gap by proposing an inverse-based numerical homoge-
nization methodology capable of capturing both material anisotropy
and possible conversion-induced alterations, in an effective and robust
manner.

The intrinsic complexity of corrugated board is further exacerbated
by the converting process, which refers to board materials after they
have undergone industrial processing operations such as cutting,
folding, gluing, creasing, and printing. These conversion processes
introduce localized deformations, residual stresses, and often irrevers-
ible damage in critical regions. As a result, the effective mechanical
properties of the board, and consistently the homogenized numerical
properties, can deviate significantly from those of the original flat panels
[39,44-46]. Accurate modeling of such behavior is essential for pre-
dicting performance in end-use applications, such as packaging design,
structural optimization, and failure analysis.

Traditional modeling approaches include fully resolved finite
element models that explicitly simulate the geometry of the corrugation,
as well as classic homogenization methods that aim to derive effective
material properties for macro-scale simulation. While the former offers
high fidelity, it is computationally expensive and impractical for large-
scale applications. On the other hand, classic homogenization often
fails to capture the influence of conversion-induced features and
microstructural heterogeneity [12,39].

In order to bridge this gap, this paper presents a novel inverse-based
multi-step numerical homogenization framework aimed at the me-
chanical characterization of converted corrugated board. The proposed
approach combines a two-stage inverse modeling technique with a nu-
merical homogenization scheme. At its core, the method involves
identifying effective material parameters by minimizing the discrepancy
between experimental observations or detailed simulations and the
response of a simplified (homogenized) model. This inverse problem is
solved iteratively, either by mathematical programming or artificial
intelligence methods, allowing for the progressive refinement of the
homogenized material behavior across multiple scales. The multi-step
structure of the approach allows for a sequential transition from fine-
scale geometric modeling to coarse-scale homogenized representa-
tions, each step incorporating corrections informed by inverse analysis.
This enables the model to account for both intrinsic material anisotropy
and conversion-related modifications. Importantly, this method bal-
ances accuracy and efficiency, making it suitable for industrial appli-
cations where rapid simulation and prediction are critical.

The proposed framework is validated through a series of numerical
experiments and comparison with experimental test data measurements.
The gathered results demonstrate the method ability to reproduce key
mechanical behaviors observed in converted corrugated structures,
including stiffness degradation, and direction-dependent strength, by
providing an accurate and computationally efficient tool for mechanical
material characterization.

2. Methodology
2.1. Overview of the research workflow

The aim of the methodology presented in the paper is to robustly
retrieve the converted properties of the cardboard. The overall meth-
odology consists of three key stages: (i) experimental testing (which, in
this paper, in Results Section, is replaced by pseudo-experimental
approach), (ii) inverse identification of effective stiffness parameters
of converted board (Inverse Problem I), and (iii) iterative parameter
adjustment to identify board imperfections (Inverse Problem II). Sche-
matically, the procedure was presented in Fig. 1; specifically, Fig. 1(a)
represents Inverse Problem I, while Fig. 1(b) reflects Inverse Problem II.
In the paper, for development and validation of the methodology, the
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Fig. 1. Graphical representation of inverse-based multi-step mechanical characterization of converted corrugated board: (a) inverse identification of effective
stiffness parameters (Inverse Problem I) and (b) iterative parameter adjustment to identify board imperfections (Inverse Problem II).

experimental testing is replaced by a pseudo-experimental approach —
see right side of Fig. 1(a) — the experimental data were generated by a
numerical method.

In the methodology, the corrugated board samples are tested by six
reference mechanical procedures, to determine their effective stiffness
behavior under different loading conditions (see Section 2.2). The
following tests are used: ECT, which measures the compressive strength
of board along the edge, four-point bending stiffness test in machine and
cross-machine direction (here abbreviated as BNT-MD and BNT-CD,
respectively), which evaluates the flexural rigidity, torsional stiffness
test again in machine and cross-machine direction (here abbreviated as
TST-MD and TST-CD, respectively), which measures the material resis-
tance to twisting, and SST, which represents the in-plane shear behavior

using a square sample. For each test, force-displacement curves were
generated by finite element method computations, which served as
reference experimental data for numerical calibrations for the left side —
Fig. 1(a) and 1(b).

2.1.1. Pseudo-experimental testing

Since this study presents the methodology, physical experiments, see
Section 2.2, were replaced by high-fidelity 3D FE models of the actual
recommended test specimens, which are described in Section 2.3. These
models fully replicated the mechanical tests under adequate and real-
istic boundary conditions.

To simulate real-world production-related defects, the following
types of imperfections must be considered:
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e paper property modifications;
o fluting geometry deviations;
e paper processing artifacts.

To represent these imperfections, controlled changes were intro-
duced in the FE models, including slight variations in the material
parameters—thickness and Young’s moduli—of all paper layers, as well
as minor deviations in wave geometry, specifically amplitude and
wavelength. The magnitude of these variations was set to = 5 %,
resulting in pseudo-experimental force-displacement curves that mimic
the variability observed in real tests, while maintaining full control over
unknown factors. All types of imperfections were introduced simulta-
neously in the analysis to increase the difficulty of identifying the true
cardboard parameters. A comprehensive discussion of how such im-
perfections affect the structural response of corrugated board can be
found in the study by Mréweczynski et al. [45].

2.1.2. Inverse Problem i — Inverse identification of effective stiffness
parameters

A shell-based numerical models of cardboard selected (i.e., without
explicit corrugated geometry) was constructed for each test configura-
tion, for more details see Section 2.3. The material input for the models
representing the constitutive behavior of the board used was defined
through ABDR stiffness matrix (plane stress membrane, bending and
shear components known from the standard plate and shell theories of
orthotropic materials) according to previous works of the group
[9,30,33-35,45,46].

The board mechanical response in Inverse Problem I was optimized
using a gradient-based inverse procedure (primal-dual interior-point
method) combined with least-squares fitting, adjusting the elements of
the ABDR stiffness matrix. The goal was to iteratively minimize the
discrepancy between pseudo-experimental (from 3D FE models, but, in
general, from real experimental tests) and numerical (from 2D FE
models) curves of test outcomes, allowing for an implicit capture of the
imperfection effects. For both models the representative so-called
“board performance vector” was defined to be used in least-square
fitting (design parameters defined in Section 2.6). The initial design
parameters were taken from ideal case of board used, i.e. without
production-related imperfections. Finally, in Inverse Problem I, the
converged solution represented the board with deteriorated properties
due to converting, expressed via ABDR stiffness matrix. Since this form
is not practically useful, in Inverse Problem II, the numerical homoge-
nization was employed to iteratively retrieve the effective properties of
the papers and board geometry.

2.1.3. Inverse Problem II — Numerical homogenization and iterative
parameter adjustment

In the Inverse Problem II, a separate RVE model was constructed
using initial paper material properties and ideal fluting geometry (with
no imperfections), please follow Fig. 1(b). Initial parameters are ideal, i.
e., the real-world production effects are excluded. Numerical homoge-
nization was applied to compute the board effective parameters, see
Section 2.5, to be used in the Inverse Problem II, for the purpose of
accounting for manufacturing-induced deviations of ideal material
properties of papers and board geometry.

Also, to include the ECT index in assessing material properties of the
board, its influence was incorporated using an analytical-empirical
approach, based on findings from a recent study [47]. Its reference
value including real world imperfections comes from the ECT full 3D FE
model, see Fig. 1(b). Analytical-empirical approach used was briefly
described in Section 2.4.

Same as in the previous stage, an iterative inverse procedure was
then applied to modify the paper material properties and fluting ge-
ometry. The iteration process continued until the homogenized stiffness
parameters matched to those from Inverse Problem I and the outcome of
the analytical-empirical model of ECT matched to ECT result from 3D FE
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model. The final, converged parameters are considered to be the effec-
tive material properties of paper and fluting geometry, which includes
the real-world production-related imperfections through inverse-based
multi-step mechanical characterization.

The details of mathematical approach used for minimizations of cost
functions, both used in Inverse Problem I and II, were presented in
Section 2.6.

2.1.4. Using artificial intelligence to speed up the process

In order to enable fast predictions, which could be used at corrugated
board plant, the methodology proposed in this study may also utilize an
Artificial Neural Network (ANN) as a surrogate for the computationally
expensive finite element analyses, particularly in Inverse Problem I.
Using ANN can be especially beneficial in applications such as quality
control or box design optimization. Specifically, in Inverse Problem I,
the ANN surrogate is used to predict the board performance vector based
on the ABDR stiffness matrix. Section 2.7 provides details on the
implementation and validation of the ANN model used in the study.

2.2. Mechanical testing of corrugated board

In the proposed methodology, the material properties of the boards
should be acquired through mechanical tests of the laboratory condi-
tioned samples. However, as a first step of verifying this methodology,
the pseudo-experimental approach was used in the study. Despite, this
fact the recommended and used in numerical approach mechanical tests
were described in this Section to provide the reader with a clear un-
derstanding of the tests employed.

Set of corrugated board samples have to be tested in laboratory
conditions, i.e., according to TAPPI guidelines (23 °C temperature and
50 % relative humidity) [48,49]. In the methodology, the following
experimental procedures for identifying the board properties are used:

e ECT, see Fig. 2(a);

e BNT-MD and BNT-CD, see Fig. 2(b);
e TST-MD and TST-CD, see Fig. 2(c);
SST, see Fig. 2(d).

Bending stiffness is measured using the four-point bending method.
A sample 50x250 mm is loaded in such a way that a constant bending
moment and zero shear force occur between the inner supports. How-
ever, a shear force remains present between the outer and inner sup-
ports, which allows the test to also account for shear stiffness. Bending
tests are conducted along both the machine direction and cross-machine
direction, at a speed of 37.5 mm/min.

The edge crush test measures the compressive strength of a 25x100
mm sample (typically thicker than 1 mm) when loaded along its edge.
For more slender specimens, failure tends to occur due to loss of stability
rather than material crushing. ECT is one of the most widely recognized
and practically important parameters used in both analytical and nu-
merical evaluations of corrugated packaging load capacity. The test is
performed in the cross direction at a speed of 12.5 mm/min.

Shear stiffness is determined using a sample of 85x85 mm, diago-
nally loaded at opposite corners. Displacements and reaction forces
measured at the remaining corners are used to calculate the shear
stiffness. Only the linear part of the force-displacement curve is used in
identifying the SST parameter. While SST results are sensitive to
crushing, they remain reliable even when the samples are significantly
damaged.

The torsional stiffness test involves twisting a 30x150 mm sample by
a few degrees in both directions. Only the linear segment of the tor-
que-angle curve is considered in evaluating torsional stiffness. Accurate
results are ensured by stable sample mounting, a static method for
measuring angle and torque, and the relatively large width of the sam-
ple, which promotes homogenized material behavior. These tests are
conducted in both MD and CD directions.
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To obtain statistically representative results, five sets of samples
should be used for each type of board, assuming a consistent paper
sheets (including source supplier) and identical testing conditions. Each
sample must be visually inspected to exclude potential damaged or
distorted sample.

Only bending and torsion tests are conducted both in the machine
direction (along the board flutes) and in the cross-machine direction
(perpendicular to the flutes). The testing speed for ECT is set to 12.5

(b)
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(b)

(d)

Fig. 2. Test setups used in the experimental study: (a) edge crush test, (b) bending stiffness test, (c) torsion stiffness test and (d) shear stiffness test.

mm/min, in accordance with FEFCO Testing Method No. 8 [50]. For
TST, the applied angular velocity is 0.03 rad/s, while for BNT and SST,
the testing speed is 37.5 mm/min, therefore all tests may be considered
as quasi-static. In Fig. 3, the boundary conditions and loading of card-
board samples in laboratory tests are shown.

< |

(c) (d)

Fig. 3. Sample loading schemes for: (a) bending test, (b) edge crush test, (c) shear stiffness test, and (d) torsional stiffness test.
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2.3. Finite element modeling of mechanical tests

Numerical models of the cardboard samples were created using
commercial FE software (Abaqus Unified FEA software [51]). In Fig. 3,
the load schemes applied in all laboratory tests are presented. The di-
mensions of the samples were: 50x250 mm in the 4-point bending test,
25%x100 mm for the ECT, 85x85 mm in the SST, and 30x150 mm for the
torsional stiffness test. Both the 4-point bending and torsional tests were
conducted in the machine and cross directions of the cardboard.

The study used B-flute corrugated cardboard with a flute height of
2.46 mm and a period length of 6.5 mm. The 3D model of the cardboard
consisted of three paper layers, each assigned material properties listed
in Table 1, where t is the thickness, E; and E; are the Young’s moduli in
machine and cross directions, v, is the Poisson’s ratio, G;» is the in-
plane shear modulus, G13 and Ga3 are the transversal shear moduli,
and oy is the yield strength. These material parameters were also used in
the homogenization process to determine the effective stiffness values.
The obtained stiffnesses were then applied as material data in the
simplified 2D models of the corrugated board.

In all numerical analyses, the four-node quadrilaterals shell elements
with full integration (S4 elements, from Abaqus element library) were
assumed. In 3D cardboard models, the FE mesh size was equal to 0.5
mm, 3 mm in simplified 2D shells, and 0.2 mm for the RVE models in the
homogenization procedure. The results of the numerical analyses in
BNT-MD, BNT-CD, ECT and SST were the reaction forces at the supports,
and the torque in the TST-ND and TST-CD.

2.4. Analytical-empirical ECT model

The analytical-empirical determination of the ECT value combines
precise theoretical modeling with corrections based on real-world ob-
servations of corrugated board behavior. In practice, cardboard samples
rarely exhibit ideal structural properties — material and structural im-
perfections often occur, significantly influencing compressive strength.
Therefore, a purely analytical approach may overestimate the actual
mechanical performance. To address this, an analytical-empirical model
is used [47], incorporating both local strength parameters and the ef-
fects of buckling in the paper layers. Therefore, the ECT value was
calculated from the following formula:

ECT = _SCTiapy;, ¢))

i=1

where SCT; is the short-span compression test value of the i-th paper, a;
is the take-up factor of each layer and y; is the parameter reducing the
static load capacity on compression of each paper layer. This reduction
factor is crucial as it includes the buckling behavior of the individual
layers, which significantly limits their load-bearing capacity in real
conditions. It can be determined from:

0.5
7, = SCT, °3 (’g %) <1, @

where H is the height of the cross-section, a is the empirical parameter, g
is the grammage of the individual paper, and b; is the buckling length of
i-th layer. The parameter a was assumed in accordance with the work of
Garbowski et al. [47], which value for three-layer cardboards is equal to
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52. In Fig. 4, the buckling lengths of the paper layers and the height for
three-layer corrugated board are presented. In Table 2, the material
parameters used for the analytical-empirical determination of the ECT
value of the cardboard are listed.

2.5. Numerical homogenization of corrugated board

In the study, the numerical homogenization was used in order to
model the mechanical behavior of corrugated paperboard. The method
used here was proposed by Biancolini [8] and later extended by Gar-
bowski and Gajewski [9]. In the method, the equivalence of strain en-
ergy between the full (3D) structure, i.e. representative volume element
of corrugated paperboard and the simplified shell (2D) model is utilized.
Periodically repeating segment of the full structure is used as RVE. The
purpose is to simplify RVE to a single shell element with one layer in
such a way that the overall behavior of the models, RVE and 2D, are the
same. The key assumptions of the described method are presented
below; more details may be found in [9].

Displacements at the nodes of the computational mesh can be
determined using the Finite Element Method (FEM). The typical equa-
tion for FEM analysis takes the following form for external nodes of RVE:

K.u, =F, 3

in which, K, is the global stiffness matrix with application of static
condensation for the external RVE nodes; u, is the displacement vector
at the external nodes; F, is the nodal force vector applied to the external
nodes.

In order to neglect, the internal nodes of the RVE model, the static
condensation is used for deriving the global stiffness matrix. The un-
knowns of the FEM system of equation are reduced to selected degrees of
freedom, what greatly limits the computational cost. During homoge-
nization process the stiffness matrix is computed only for external nodes
by eliminating internal nodes:

Ke = Kee - KeiKi_ilKie (4)

Subscript e states for external nodes, while subscript i states for internal
nodes.
In the method, the strain energy function takes the following form:
1

1
E= EuZFe = EuZKue ©)

The relations between nodal forces and nodal displacements reads:

Kee Kei u. _ Fe

o k][] [5] ®
| b =P |
I I

Fig. 4. Cross-section of three-layer cardboard.

Table 1
Mechanical and physical parameters of papers.
No. t E; E, V12 G2 Gi3 Ga3 6o
(mm) (MPa) (MPa) =) (MPa) (MPa) (MPa) (MPa)
1 0.16 5600 2800 0.41 1550 100 80 13.8
2 0.13 5400 2600 0.42 1450 90 70 11.4
3 0.16 5600 2800 0.41 1550 100 80 13.8
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Table 2
Material parameters for analytical-empirical calculation of the ECT.
No. SCT o g b
(N/mm) (&) (g/m?) (mm)
1 2.2 1.00 120 6.5
2 1.5 1.32 120 4.1
3 2.2 1.00 120 6.5

To achieve the equilibrium between 3D model and 2D model proper
nodal displacements are required by taking into consideration the
bending and membrane behavior through homogenization. It is essential
to relate the displacements and strains in the following way:

u=H,e (2]

in which, H, is computed for each node, namely:

T
&y
Uy
x o0 y/2 xz 0 yz/2 z/2 0 Yxy
ty 0y x/2 0 yz  xz/2 0 z/2| |«
u, | =|0 0 0 —x*/2 —y*/2 —xy/2 x/2 y/2
0 00 0 O -y —x/2 0 0 Ky
* 00 0 «x 0 y2 0 0 ], |ky
o,
Vxz
L 7yz dn

(8

Now, after [8,9], if we get back to the strain energy, we obtain the
following:

1
E= EeeTHeTKHeeg ©)]

what may be simplified to the form:

1
E= EeeTere{area} (10)
in which:
T
H, — H,KH, an
area

The matrix obtained, Hy represents the stiffness matrices corresponding
to compression/tension, bending, coupling, and transverse shear stift-
nesses, denoted as Asxs, Bsx3, D3x3 and Raya, respectively:

A3><3 B3><3 0
Hy= | B3z D3z 0 12)
0 0 Rao

2.6. Inverse problem formulation and optimization strategy

The mechanical characterization and microstructural identification
of corrugated cardboard structures were approached through a two-
stage inverse problem, each formulated as a nonlinear constrained
optimization task.

2.6.1. Calibration of simplified plate model (ABDR stiffness identification)

In the first stage (Inverse Problem I), a simplified homogenized
model of the corrugated cardboard plate was calibrated to reproduce the
mechanical behavior observed in detailed three-dimensional (3D) FE
simulations. These 3D simulations accounted for structural imperfec-
tions such as local buckling of the fluting, small variations in material
stiffness, and geometric irregularities, aiming to mimic realistic
manufacturing conditions.
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The goal of this stage was to identify the effective components of the
ABDR stiffness matrix (plane stress membrane, bending and shear
components known from the standard plate and shell theories of
orthotropic materials):

{A11,A2,A12,A33,D11,D22,D12,D33, R4, Rs } (13)

by minimizing the discrepancy between theoretical predictions of
simplified plate tests and the results obtained from full 3D FE analyses.
The mechanical tests considered were described in Chapter 2.2:

The optimization problem was formulated as

minf (x) as

where x is the vector of ABDR stiffness parameters and f(x) is the
objective function defined as:

Fx) =Y wi(e®x) — o)’ (15)
where:

e w; are the weighting factors assigned to each test,

e 62P(x) denotes the theoretical response predicted by the simplified
plate model,

e 630 denotes the corresponding response obtained from the 3D FE
simulations.

The optimization was constrained by physically meaningful bounds
on the stiffness parameters:

L <x<u, (16)

and was solved using a primal-dual interior-point method with Conju-
gate Gradient (CG) subproblem solver, finite-difference gradient ap-
proximations, and multiple initial guesses (multi-start strategy) to
mitigate the influence of local minima.

The calibration yielded a set of reference ABDR stiffness values S,
which were then used in the second inverse problem.

2.6.2. Identification of corrugated layer geometry and material properties
In the second stage (Inverse Problem II), the geometrical parameters
of the corrugated layer and the material properties of the constituent
paper layers (top liner, bottom liner, and fluting) were identified. The
aim was to reconstruct the microstructural features that would generate
the previously identified reference stiffness values §'¢.
The design variables in this stage included:

o fluting geometry:
wave period P,
wave height H;
e material properties for each layer:
— thickness TH,
- Young’s modulus in MD (Eyp),
- Young’s modulus in CD (Ecp).

The optimization problem was formulated as:

ming(y) an

where y is the vector of geometrical and material parameters, and g(y) is
the objective function defined as:

&) = Y (s - 57 )’ as)

J

where:
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. S}”"del (y) represents the ABDR stiffness components predicted by the
analytical or semi-analytical model,
. S;ef are the reference values identified in previous stage,

e y; are weighting coefficients associated with each stiffness
parameter.

As in the first stage, box constraints ensured realistic values of the
physical parameters:

l,<y<u, 19)

2.6.3. Solution strategy

A primal-dual interior-point method was employed to solve both
optimization problems. This approach, originally introduced by Fiacco
and McCormick [52] and further developed by Byrd, Hribar, and
Nocedal [53,54] and relies on minimizing a barrier-augmented
Lagrangian function:

LA 0) =)+ Y AG(%) + D pceqe(x) (20)

where 1 and u are the Lagrange multipliers for inequality and equality
constraints, respectively.

Inequality constraints were enforced through the addition of loga-
rithmic barrier functions:

Frarrir(%) = (%) =Y In(3— ) —pd_ In(ty —x)) D

where 7 is a positive barrier parameter gradually reduced during the
optimization process.

The optimization algorithm used the CG) method to solve the sub-
problems arising at each iteration, facilitating efficient computation
even for larger-scale parameter spaces. Finite differences with a fixed
step size were used for numerical gradient approximations, ensuring
stable derivative estimates.

The optimization procedure was guided by the following conver-
gence criteria:

e an optimality tolerance on the first-order optimality conditions
(107°);

e a step tolerance on the design variables (10~*);

e a finite difference step size for gradient approximations (10-%);

e a constraint violation tolerance (10-°).

The solution process was initialized from multiple starting points,
following a multi-start strategy, to reduce the risk of convergence to
local, suboptimal minima. The final identified parameters were those
associated with the global minimum of the objective function among all
optimization runs.

2.7. Ann-based prediction of effective material properties
A part of the calculation procedure related to prediction of the

effective material properties can be replaced by the ANN-based model as
presented in Fig. 5. In such the ANN-based model, the input data are

[ 2D shelt models e ANN

| Board performance vector

| Board performance vector |

Fig. 5. Replacement of the board performance calculations by ANN model.
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elements of the ABDR stiffness matrix (10 inputs), and the output vector
consists of the effective material properties from mechanical tests
described in Chapter 2.2, i.e. BNT in MD, BNT in CD, TST in MD, TST in
CD and SST.

The optimization procedures are very time-consuming due to mul-
tiple runs of the cost function, which can require performing FE com-
putations, as we propose in this study. However, the numerical
simulations can be replaced by the ANN-model trained using the data
from these simulations. In the literature, one can find some examples for
predicting the strength of specific structures and materials, e.g., the
ultimate axial strengths of concentrically loaded concrete-filled steel
tubular columns strengthened with carbon fiber-reinforced polymer
[55], the bond strength between steel reinforcement and concrete [56],
the shear strength of fiber reinforcement bars concrete beams [57], the
compressive strength of masonry [58], the tensile strength of fiberglass
polymer composites [59]. In this paper, the ANN-based model is
employed to predict the performance parameters of converted board.
The model was trained using the data from 2D shell model calculations
(described in Section 2.3). In this way, the optimization process can be
much faster.

In this study, a feedforward multilayered ANN with 2 hidden layers
was employed, see Fig. 6. The model has 10 inputs and 5 outputs. Each
hidden layer consists of 10 neurons with tangent sigmoid transfer
function. The output layer consists of 5 neurons with linear transfer
function as 5 outputs of the ANN-model are calculated (effective mate-
rial parameters). The data used for training was divided into training,
validation, and tests sets. In general, the training and validation sets are
used during the training process. The training set is used directly to train
the ANN, while the validation set allow to stop the training process at
the right moment in order to avoid the overfitting of the ANN-model.
Using the trained ANN-based model instead of numerical simulations
can speed up the calculation process.

3. Results and discussion
3.1. Inverse problem i — Identification of the ABDR stiffness parameters

The first inverse problem (IP1) aimed to identify the effective stiff-
ness components of the ABDR matrix for a homogenized corrugated
cardboard plate, based on synthetic reference data. These reference
values originated from a perturbed 3D finite element model incorpo-
rating realistic imperfections such as 5 % variability in material stiff-
nesses and geometrical dimensions. The optimization was initialized
using stiffness values computed for the idealized geometry (i.e., without
imperfections).

The vector of design variables included ten independent components
of the ABDR matrix:

{A11,A2,A12,A33,D11,D22,D12,D33, R4, Rs } (22)

3.1.1. Convergence behavior

The optimization process exhibited a smooth and monotonic reduc-
tion in the objective function value, spanning nearly six orders of
magnitude (from 1 to below 107°) as shown in Fig. 7. This indicates
both the accuracy of the inverse model and the numerical stability of the
algorithm used.

3.1.2. Evolution of the identified parameters

Figs. 8 and 9 illustrate the evolution of raw and normalized stiffness
parameters, respectively. All components gradually stabilized after
approximately 40-50 iterations. Several stiffness components experi-
enced significant changes compared to their initial (idealized) values.

e Membrane stiffness components A11,Agp, A3z increased by more than
100 %, indicating low sensitivity or strong compensation for geo-
metric and material imperfections.
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Fig. 6. ANN-based model for prediction of effective material properties.

objective function
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iterations

Fig. 7. Convergence history of the objective function during inverse identifi-
cation of ABDR stiffness parameters — Inverse Problem I.

e Bending stiffness components D11, Doz, D12, D33 exhibited relatively
modest changes (within 30 %).

e Shear stiffness components R4 decreased, reflecting the softening of
transverse shear behavior due to out-of-plane imperfections.

3.1.3. Sensitivity analysis
The parameter sensitivity was evaluated at each iteration and is sum-
marized using box plots in Fig. 10. The distribution shows that the bending

stiffness terms—especially D33, Dag—consistently had the highest influence
on the objective function. Membrane stiffnesses A; showed negligible sensi-
tivity throughout, which may be explained by the dominance of bending de-
formations in the loading configurations used. Interestingly, the shear terms
R4 and Rs exhibited wide spread (outliers present), indicating moderate but
variable influence depending on the iteration step. These findings are
consistent with the results of Garbowski et al. [60], who demonstrated via
designed experiments that the effective mechanical response of corrugated
boards is governed predominantly by bending and transverse shear behavior,
with relatively minor contribution from membrane terms.

3.1.4. Discussion

The optimization procedure successfully recovered the effective
ABDR stiffness matrix that replicates the behavior of a realistic, per-
turbed 3D model using only simplified plate-level parameters. The
strong deviation between the final and initial parameter values confirms
the critical importance of calibration, especially when imperfections or
nonlinearities are present at the microscale.

The steep and stable convergence of the objective function (Fig. 7),
along with coherent parameter trends (Figs. 8-9), confirms that the
solution is robust and well-posed. The observed low sensitivity of in-
plane stiffness terms and high sensitivity of bending terms further sup-
ports the use of inverse identification focused on bending-dominated
tests.

Finally, the effectiveness of the approach was confirmed through
multiple initializations (see Table 3), which all converged to consistent
solutions with only minor variance (within 5 %), reinforcing the
uniqueness and reliability of the identified stiffness vector.

Additionally, the sensitivity analysis conducted during optimization,
averaged over all iterations, reveals that the most influential parameters
were D33, Doy, and Dy,. This observation aligns closely with the findings
reported by Garbowski et al. [60], where a systematic sensitivity anal-
ysis demonstrated that bending stiffnesses and bending-twisting
coupling terms are the dominant factors influencing the global me-
chanical response of corrugated structures. The consistency between our
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Fig. 8. Evolution of raw ABDR stiffness parameters across optimization iterations.
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Fig. 9. Evolution of normalized ABDR stiffness parameters relative to their
initial values.

optimization-based sensitivity trends and those independently obtained
via designed sensitivity experiments further validates the robustness and
physical realism of the inverse identification process presented herein.

3.2. Inverse problem II — Identification of the microstructural parameters

In the second inverse problem (IP2a), the objective was to recon-
struct the geometry and material properties of the corrugated board’s
constituent layers based on the target stiffness values obtained in the
first inverse problem (IP1). The identified target ABDR matrix served as
a reference for calibrating a parameterized analytical model that takes
as input the fluting geometry (period and height) and the mechanical
parameters of the top liner, fluting, and bottom liner.

The full set of design variables included: \.

e geometry:
o fluting period P [mm]
o fluting height H [mm];

10

e layer 1 (top liner):

e thickness TH; [mm]

¢ Young’s moduli EMP, ESP [MPal;
e layer 2 (fluting):

o thickness THy [mm]

e Young’s moduli E¥P,ESP [MPal;
e layer 3 (bottom liner):

o thickness TH3 [mm]

e Young’s moduli E¥P,ESP [MPa]

3.2.1. Convergence behavior

Fig. 11 presents the convergence of the objective function over the
optimization process. A clear and rapid decrease is observed—from
values exceeding 1.0 to less than 1072 within 25 iterations. The nearly
monotonic trend, without erratic oscillations, indicates a well-posed
problem and a stable descent direction within the interior-point opti-
mization algorithm.

3.2.2. Parameter evolution

Fig. 12 shows the absolute values of all design variables throughout
the optimization. Parameters are plotted with two y-axes: blue for ge-
ometry and thicknesses [mm], and red for elastic moduli [MPa]. The
optimization exhibits distinct stages:

e a reduction in H (fluting height) followed by an increase in paper
moduli (particularly E¥P, E¥P),

e strong adjustments in the fluting and bottom liner properties,

e rapid convergence of paper thicknesses after 10-15 iterations.

Fig. 13 presents the same evolution in normalized form, offering
clearer insight into the relative magnitude of parameter changes.
Notably: (i) EMP decreases by nearly 70 %, (ii) H fluctuates mildly, (iii)
most other parameters converge within + 5 % of their initial values.

3.2.3. Sensitivity analysis

The sensitivity analysis (Fig. 14) reveals that the most influential
parameter throughout the optimization was the fluting height H. It
consistently showed the highest median sensitivity and wide variability,
indicating its dominant role in adjusting the out-of-plane stiffness. Other
influential parameters include: (a) EYP, ESP, and EXP, (b) modest
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Fig. 10. Box plot of parameter sensitivities computed throughout the optimization iterations.

Table 3
Identified ABDR stiffness parameters from IP1 optimization with multi-start initialization: mean values and standard deviations.
Ay Az A Ass R4 Rs Dy Ds Di> D33
[N/mm] [Nmm]
4277.4 2754.1 915.1 1335.8 3269.5 1923.3 981.2 698.9 15.4 101.9
+127.0 +79.8 +25.2 + 38.9 + 84.2 + 51.6 + 29.7 + 20.9 + 0.41 + 2.81
T T T 11 v . . .
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o
o
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iterations Fig. 12. Evolution of parameter values during optimization.

Fig. 11. Objective function convergence during the identification of geometric
and material parameters (logarithmic scale) — Inverse Problem IIL.

influence from thicknesses TH,, THs, (c) low influence from EP, ESP,
and P.

This profile confirms that while geometry—particularly wave
height—drives the global bending stiffness, the material properties in
MD direction of fluting and liners act as fine-tuning elements.

11

3.2.4. Discussion

The results of the second inverse problem (IP2) confirm that it is
possible to reliably reconstruct the microstructural parameters of
corrugated board by calibrating a simplified analytical model to match
global stiffness characteristics. The optimization process demonstrated
good numerical conditioning, as evidenced by the smooth and mono-
tonic convergence of the objective function. The recovered parameter
set yields an effective stiffness matrix that closely approximates the
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Fig. 14. Box plots of parameter sensitivities over the optimization history in IP2.

target values previously identified through inverse homogenization in
IP1.

The parameter evolution observed during optimization provides
valuable insight into how different physical quantities influence the
macroscopic behavior of the structure. The fluting height H emerged as a
critical variable, undergoing noticeable adjustments and exhibiting the
highest sensitivity across the iterations. This confirms its fundamental
role in controlling bending stiffness and structural inertia, a fact long
recognized in the mechanics of sandwich and corrugated panels.
Although the fluting period P was free to vary, its influence was rela-
tively minor in comparison, suggesting that under given geometric
constraints, period variations play a secondary role in stiffness tuning.

12

Equally significant was the role of the elastic moduli in the machine
direction (MD), particularly for the fluting and bottom liner layers. The
optimizer adjusted these parameters in a coordinated way, effectively
compensating for the limitations imposed by fixed or weakly sensitive
geometric variables. In contrast, moduli in the cross direction (CD)
showed lower sensitivities, except for the fluting layer where transverse
stiffness appeared to affect the shear response of the plate. This agrees
with physical intuition, as the fluting, being highly anisotropic and
spatially curved, contributes disproportionately to both bending and
shear stiffness components, especially those related to coupling effects.

An interesting observation is the relative stability of the thickness
parameters. Although they were included in the design space, their
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influence was less pronounced than initially expected. This suggests
that, within realistic bounds, the optimizer preferred to adjust stiffness
by modulating the modulus rather than the cross-sectional dimensions.
This behavior may reflect the nonlinear and geometry-sensitive scaling
of flexural rigidity with respect to thickness, and possibly the smoother
influence of modulus changes on the target stiffness metrics used in the
objective function.

Furthermore, the consistency of parameter trajectories and the clear
dominance of a few key variables in the sensitivity analysis underscore
the well-posed nature of the inverse problem and the robustness of the
adopted formulation. The optimization did not exhibit pathological
behavior such as parameter drift or degeneracy, which often complicates
inverse identification in over-parameterized systems. Instead, it
converged to a physically meaningful and interpretable solution, in
which fluting geometry and directional stiffnesses were adjusted in a
balanced and effective manner. Importantly, the use of a multi-start
strategy confirmed that the optimization consistently converged to the
same solution (see Table 4), with only minor discrepancies attributable
to the chosen convergence tolerances and stopping criteria.

Overall, the findings from IP2 strongly support the feasibility of
using reduced-order plate models for back-calculating internal struc-
tural parameters of corrugated cardboard. The results also illustrate the
interdependence between geometry and material properties, and how
these two domains interact within the optimization framework to
minimize deviation from experimentally informed target stiffness
values. This approach opens the door to more efficient characterization
workflows in industrial or design settings, where full-scale 3D simula-
tions or extensive experimental campaigns may be impractical.

3.3. ANN model performance results and discussion

In this study, it is proposed to replace the numerical simulations by a
trained ANN in order to speed up the calculation during optimization
process. Table 5 shows three variants of the tested ANNs for prediction
of the effective material parameters. Variant 1 do not include any
neuron in the hidden layer. It means that such ANN model has only the
input layer with 10 inputs and the output layer with 5 neurons (each one
related to one output — one material parameter). Variant 2 includes one
hidden layer with 10 neurons while Variant 3 includes two hidden layer
with 10 neurons at each hidden layer.

The training process of the ANN models were performed 100 times
for each variant of the ANN structure. The Levenberg-Marquardt method
was adopted as the training procedure. The dataset used for training
contained 2000 cases coming from numerical simulations and was
divided into training set (1400 cases), validation set (300 cases), and test
set (300 cases). In order to evaluate the performance of the ANN the root
means squared error (RMSE) is defined as follows:

RMSE = (23)

where ¥ denotes the expected value of the ANN output, y is the obtained
value of the ANN output and N is the number the data for testing. After
100 times training processes, the average values of the ANN perfor-
mance for each output for three variants of the ANN structures are
presented in Table 6. One can conclude that each tested ANN model
gives very accurate results, while the best one are obtained for the
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Table 5
Structure of artificial neural network models with tangent sigmoidal transfer
functions in hidden layers and linear transfer function in the output layer.

Number of neurons in the first Number of neurons in the second

hidden layer hidden layer
Variant 0 0
1
Variant 10 0
2
Variant 10 10
3

Variant 3 with 2 hidden layers.

In all previous tests, the tangent sigmoid was applied as the transfer
function in the hidden layers. Now, the transfer function employed can
be tested. The number of neurons was the same as in Variant 3 (10
neurons both at the first and second hidden layers). We applied the
following transfer functions in the hidden layers:

e Variant 4 — linear function,
e Variant 5 - logistic function,
e Variant 6 — ReLU (Rectified Linear Unit).

In the output layer, the linear function was kept as the transfer
function. The results are shown in Table 7. One can notice that the best
results were obtained for Variant 4 (with linear transfer functions in
hidden layers). However, the results are very close to the results ob-
tained for Variant 3 (with tangent sigmoidal transfer functions in hidden
layers).

The speed-up benefit of using ANN was evaluated based on 100
representative cases. The average computation time for the ANN model
was 0.0037 s, compared to 24.5 s for the corresponding FE model
computations. This result demonstrates a substantial computational
advantage of the ANN model over the traditional FE approach, with an
average speed-up factor of approximately 6600 times. Such a dramatic
reduction in computation time is beneficial for applications requiring
real-time or large-scale simulations, such as optimization tasks, uncer-
tainty quantification, or integration into digital twin frameworks, what
perfectly fits the methodology presented in this paper.

4. Conclusions

This study introduced a novel inverse-based, multi-step numerical
homogenization framework for the mechanical characterization of
converted corrugated board, accounting for both the anisotropy and
imperfections induced during production. By combining detailed 3D
finite element simulations, simplified homogenized shell models, and
optimization-based inverse analyses, the proposed methodology enables
the derivation of effective stiffness parameters that realistically reflect
conversion-related issues such as micro-damage, adhesive effects, and
geometric irregularities.

The two-stage inverse procedure successfully retrieved the compos-
ite stiffness matrix of the converted board, showing important de-
viations from the idealized configuration. This highlights the necessity
of considering production-related imperfections in computational
modeling. The iterative updating of fluting geometry and paper prop-
erties using numerical homogenization allowed for accurate calculation
of real-world board characteristics, proving that indirect inverse

Table 4
Identified geometric and material parameters from IP2 optimization with multi-start initialization: mean values and standard deviations.
P H TH, TH, TH; EWP ESP EMP ESP M0 P
[mm] [MPa]
6.18 2.47 0.168 0.136 0.168 5878.7 2939.2 1643.1 2729.3 5878.7 2939.2
+ 0.17 + 0.07 + 0.005 + 0.004 + 0.005 + 166.4 + 81.1 +47.9 + 779 + 167.3 + 83.5
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Table 6

Results of the ANNs performance (average RMSE) for three tested variants of the ANN structure model.
Output BNT in MD BNT in CD SST TST in MD TST in CD
Variant 1 1.12e10°* 1.08¢10°* 1.1610°* 1.0610°* 1.19¢10°*
Variant 2 1.40010°° 1.39¢10°° 1.3610°° 1.3610°° 1.42¢10°°
Variant 3 1.14¢10°° 1.10010°° 1.18¢10°° 1.20010°° 1.13¢10°°

Table 7

Results of the ANNs performance (average RMSE) for three tested variants of the applied transfer functions in hidden layers.
Output BNT in MD BNT in CD SST TST in MD TST in CD
Variant 4 1.06¢10°° 1.09¢10°° 1.04¢10°° 1.10e10°° 1.03e107°
Variant 5 1.8210°° 1.90e10°° 1.66e107° 1.82010°° 1.88¢10°°
Variant 6 3.93e10°* 4381074 3.45e10°* 3.64¢10°* 4071074

approaches can effectively replace or supplement physical experiments.

Sensitivity analyses revealed that fluting height and period have a
dominant influence on the board’s mechanical performance, also
bending behavior shown its critical role in design and optimization.

Furthermore, the study in the paper, shows that the incorporation of
an artificial neural network significantly reduces computational time
without compromising prediction accuracy. This makes the methodol-
ogy applicable in time-critical applications such as digital twin envi-
ronments, optimization loops or online laboratory/production
performance predictions of cardboards.

The proposed framework is not limited to a specific board configu-
ration or test type and could be extended to other layered or structurally
complex materials. In summary, the study offers a reliable and compu-
tationally efficient method for characterizing the mechanical properties
of converted corrugated board, which can be one of the tools for more
innovative design, analysis, and simulation practices in the packaging
industry.
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