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A B S T R A C T

The study presented in this article focuses on the parametric optimization of trapezoidal steel sheets used in 
construction, aiming to enhance their structural efficiency and reduce material usage. The optimization ad
dresses two primary criteria: maximizing the moment of inertia and maximizing the cover width of the sheets. 
The research employs the Sequential Quadratic Programming (SQP) method for optimization, considering the 
constraints and standards proposed in Eurocode 3. The study explores the design variables, including the di
mensions of the web and flange sections, to achieve optimal geometries for both criteria. The results indicate that 
optimizing for the moment of inertia leads to designs with larger stiffeners and more vertical web sections, 
enhancing the sheet’s resistance to bending. Conversely, optimizing for cover width results in designs with more 
delicate stiffeners and less steep web sections, increasing the sheet’s surface area coverage. Both optimization 
approaches demonstrate significant improvements over traditional designs, showcasing potential material sav
ings and reduced environmental impact. The findings highlight the importance of optimization in structural 
engineering, suggesting that tailored designs can meet specific performance requirements while adhering to 
practical manufacturing constraints. This research contributes to the development of more efficient and sus
tainable construction materials, promoting advancements in the construction industry.

1. Introduction

During designing building structures, it is necessary to take into ac
count the safety of their users and to ensure that designed object can be 
used in accordance with its intended purpose. The structure should meet 
the conditions of limit states – ultimate and serviceability. Therefore, 
the task of the structural designer is to select solutions that will prevent 
the loads from causing the destruction of all or part of the building, or 
from resulting in unacceptably large displacements and deformations of 
the structure. The requirements of the modern world make it necessary 
to choose a solution that is not only safe, but also the best possible one in 
regard to sustainable development, material consumption and cost, 
taking into account various aspects.

Construction industry is perceived as high labor intensity, resource- 
intensive branch, having significant impact on the environment. It was 
reported that the construction industry was responsible for about 20 % 
of the total energy consumption. For instance, in China, it was reported 

that, the construction industry is second-largest energy consuming 
sector [1]. Construction contributes to carbon dioxide (CO2) emissions 
on an impressive scale, accounting for as much as 30 % of global 
emissions of this gas [2]. Steel production is known for being one of the 
industrial sectors that generates the highest greenhouse gas emissions 
and requires large amounts of energy. The metallurgy process often 
relies on traditional technologies that are both energy-intensive and 
high-emitting. Additionally, the extraction of raw materials and trans
port to metallurgical plants also contribute to increasing the carbon 
footprint of this process.

Moreover, economic aspects are still important. The challenge is to 
reconcile the interests of all interested parties – the manufacturer of the 
product (materials), investor, designer, contractor and the user of the 
facility. It is obvious that each of them pays attention to different factors. 
The investor’s goal is to obtain a building that is safe and meets func
tional requirements at the lowest possible costs. In turn, the designer has 
a huge responsibility. Not only must he develop a technical design of the 
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object that will be functional, safe and economical, but also compliant 
with a number of regulations. Ideally, the contractor’s abilities, expe
riences and resources should be taken into account. This would avoid 
designing solutions that may be difficult to implement or require unat
tainable resources. From the contractor’s point of view, solutions that 
are less time-consuming and do not require much work and resources 
are beneficial. In terms of cold formed structures, price is a serious 
concern. The cost of cold rolled steel is twice as much as the cost of hot 
rolled steel [3]. Lower demand for materials reduces the investor’s costs. 
Lighter elements make the assembly process easier for the contractor. 
The accessibility of effective solutions enhances the efficiency of struc
tural design.

Therefore, in a world where sustainability, energy efficiency and 
economics are key priorities, the construction industry faces a challenge: 
how to achieve excellence in the design, construction and operation of 
buildings, while ensuring optimal use of resources/materials and mini
mal environmental impact. In this context, attention should be paid to 
trapezoidal sheets, very popular material, widely used for roof and wall 
coverings. Optimizing their cross-section will decrease demand for steel 
and bring a reduction in the carbon footprint, energy consumption and 
costs.

There are three generations of trapezoidal sheets: first – walls of the 
cross-section has no stiffeners, second – longitudinal stiffeners are used 
and the third generation – both longitudinally and transversely stiffened 
sheets are utilized. First generation trapezoidal sheet are used in lower 
spans, to about 3.5 m, in which the loads are relatively small, their 
height of cross-section is approximately up to 70 mm. Second and third 
generation sheets are often used in roofs without purlins. In such situ
ation, trapezoidal sheet is supported directly by the upper chord of the 
girder. If appropriate, the connection between sheet and the supporting 
element ensures that the trapezoidal sheet can function as lateral re
straint, preventing the upper chord from buckling [4,5]. Providing suf
ficient flexural stiffness of the sheet and torsional stiffness of the 
connection between cladding and upper chord can result in limiting 
lateral deformations also in lower chord [6]. However, replacing bracing 
with trapezoidal sheets requires caution both in the design and assembly 
process [7]. Second generation sheets are used when spacing of supports 
is up to 10 m. Third generation trapezoidal sheets are often used in 
concrete-steel composite structures and with support spacing up to 
15 m.

Trapezoidal sheets are thin-walled elements, which means they are 
classified as class four cross-sections. In such situation, a reduced cross- 
section is used to calculate the geometric parameters due to the loss of 
local stability of the slender walls. The procedure for determining the 
effective cross-section is time-consuming, therefore, in practice, the 
designers select the cross-section of trapezoidal sheets based on the 
manufacturer’s tables. This means that the knowledge of procedure of 
determining the effective cross-section of trapezoidal sheets is not 
common among engineers and no optimisation analyses are conducted. 
Ajdukiewicz and Gajewski [8] identified form of buckling of thin-walled 
element under compression using deformations theorem and finite 
element method (FEM). Flat and curved trapezoidal sheets were also 
analysed using yield line theory [9].

This study primarily emphasizes the presentation of an algorithm for 
determining the optimal design of a specific type of steel trapezoidal 
sheet in accordance with Eurocode standards. The investigation focuses 
on the outcomes of constrained optimization applied to 135 mm sheets, 
specifically addressing: (a) the maximization of moment of inertia, and 
(b) the maximization of cover width. These results are thoroughly 
examined and discussed within the context of the study.

In literature, the majority of analyses concerning optimal design 
focus on single criterion scalar optimization, where the most common 
criterion is weight of the structure [10,11]. However, the benefits of this 
approach in practical tasks are limited. More efficient method used in 
the structure optimization is multi-criteria optimization. Bicriteria 
optimization for thin-walled beams was presented in [12–15]. For 

instance, in [15], an optimization analysis for simply supported 
thin-walled beams subjected to pure bending was performed. The opti
mization criterion were the area of the cross-section and deflection, 
which depends on cross-section stiffness, therefore on the moment of 
inertia. Complex parametric analyses were performed for beams with 
perforation [16]. Also, in terms of trapezoidal sheets, in [17], optimi
zation using genetic algorithms was performed for cross-sections of low 
height and without intermediate stiffeners. In [18], an objective mea
sure of the effectiveness of existing high cross-sections with transversal 
stiffeners was found by introducing an original coefficient depending on 
the width of the covering, the strength index and the cross-sectional 
area. In scientific literature, there is a lack of studies on the optimal 
selection of cross-section of the trapezoidal sheet. Therefore, in this 
study, efforts were made to find a cross-section of trapezoidal sheet that 
could be more efficient than those currently available on the market in 
regard to (i) the maximization of moment of inertia, and (ii) the maxi
mization of the cover width.

2. Methods and materials

2.1. Stated optimization problem

The aim of this study is to find optimal designs for trapezoidal sheets. 
In task (i), the optimal geometry is sought concerning the maximum 
moment of inertia, I, assuming a minimum cover width, Bmin, fixed 
metal sheet width, L, and the height of the trapezoidal sheet, H. In task 
(ii), the optimal geometry is sought concerning the maximum cover 
width of a single trapezoidal sheet, B, assuming a minimum initial value 
of moment of inertia, Imin, fixed metal sheet width, L, and the height of 
the trapezoidal sheet, H.

The optimization problem is stated as finding the maximum moment 
of inertia as follows: 

I(x) =
∑n

i=1
(Ii(x) + Ai(x)e(x)2

i ), x ∈ X (1) 

In which Ii(x) is the local moment of inertia of single element, while 
Ai(x) is the area of the single element and e(x) is the offset from the 
centroid of element to the neutral axis of the entire trapezoidal profile.

On the other hand, the form of the objective function regarding the 
maximum cover width reads: 

B(x) = 6⋅(ws1 + ws2 + ws3 + ws3 + ws2 + ws1) + 3⋅
(
wp2 + wp1 + wp2

+ wp1 + wp2
)
+ 3⋅wp3, x

∈ X
(2) 

Please refer to Fig. 1 and Table 1 for a description of the optimization 

Fig. 1. Design variables considered in the optimization analysis for the trape
zoidal sheets, explained in Table 1 (with the exception of right side element, 
wp3, the geometry is symmetrical).
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symbols.
All optimization analyses were conducted for trapezoidal sheets with 

a height of 135 mm, metal sheet width of 1500 mm and sheet thickness 
of 1 mm. The optimization analyses focused on symmetric sheets with 2 
stiffeners in the web and 2 stiffeners on the flanges.

Design variables, x, included the height and width of the web sec
tions, the height and width of the flange sections, and the width of the 
sheeting lock. Design variables considered are presented in Fig. 1, with 
symbols explained in Table 1. It should be noted, that with the exception 
of far right-hand side element (wp3), the analysed system is symmetrical. 
The table also presents the lower and upper limits of design parameters. 
The adopted limits result from a review of existing commercial trape
zoidal sheet solutions in the European market. Also, the following con
straints were assumed for (i) optimization regarding maximum moment 
of inertia: 

L(x) ≤ 1500mm, (3) 

H(x) ≤ 135mm, (4) 

B(x) ≥ 955mm, (5) 

in which, L is the metal sheet width, H is the height of the trapezoidal 
profile and B is cover width of the trapezoidal profile.

In (ii) optimization, regarding the maximum cover width, similar 
constraints were assumed: 

L(x) ≤ 1500mm, (6) 

H(x) ≤ 135mm, (7) 

I(x) ≥ 94910 mm4, (8) 

in which, L is the metal sheet width, H is the height of the trapezoidal 
profile and I is the intertia moment of the trapezoidal profile.

The Eqs. 3 and 6 represent the maximum sheet width resulting from 
the specifications of production machines. Obviously, sheets with higher 
heights will achieve much better performance. Hence, conditions in Eqs. 
4 and 7 assume limitation to one type of trapezoidal sheet. Since 
maximizing, I and B are in contradiction, conditions in Eqs. 5 and 8
enforce finding a structures that will be not only optimal for particular 
criteria (I for (i) optimization or B for (ii) optimization), but also prac
tical from the application point of view – i.e. the new values for optimal 
design will be no worse than for the initial design case. B = 955mm and I 

= 94910mm4 are the values obtained for initial design case, see the last 
column of Table 1.

Initial values of design parameters in optimization analyses are 
presented in Table 1. They were determined based on trapezoidal sheet 
cross-sections available on the market. Furthermore, technological and 
practical constraints were also taken into account. For example, width of 
the bottom flange should provide space for placing connectors. Also, if 
the sheet is intended for assembly in the negative position, this limita
tion applies to the top flange. In terms of maximal dimensions, to large 
widths of the walls of the cross-section cause significant reduction of the 
effective width due to higher slenderness. Therefore, some of the di
mensions were constrained to avoid exploring unreasonable areas of the 
optimization space.

In this scientific work, the Sequential Quadratic Programming (SQP) 
method was used as the mathematical optimization method, which has 
proven its effectiveness in many studies [16,19]. A significant advantage 
of SQP method is that, with a relatively small number of function 
evaluations, it allows finding an optimal solution. Although it is sus
ceptible to finding local minima, preliminary investigations have shown 
that the adopted objective functions are not multimodal. The optimi
zation method used is described in Subsection 2.2.

Optimally designed load-bearing trapezoidal sheets are thin-walled 
structures; hence, it is necessary to consider local stability loss when 
calculating their load-bearing capacity. In the computational algorithm 
used in this work, local stability loss was taken into account based on the 
approach from Eurocode 3 [20]. Details of the employed method are 
presented in Subsection 2.3.

2.2. Optimization method

In this study, the sequential quadratic programming (SQP) method 
was used for the purpose of finding optimal design of trapezoidal sheets. 
Its reliability was shown on benchmark examples available in [21–25]. 
Moreover, the method proved its effectiveness in a multiple scientific 
studies by solving engineering problems, for instance in optimal design 
of concrete bubble deck slabs [19].

SQP represents the nonlinear programming methods, in which: 

F(x) , (9) 

is subjected to nonlinear constraints, i.e.,: 

C(x) ≤ 0,

A • x ≤ b,

bmin ≤ x ≤ bmax, (10) 

F(x) is the cost function of the design parameters, x. b and beq are 
one-column matrices. A and Aeq are matrices; C and Ceq are functions. 
bmin and bmax represent the lower and upper boundaries of the design 
parameters. Equality constraints also are possible by the following: 

Ceq(x) = 0,

Aeq • x = beq, (11) 

The constraints are considered by solving the Lagrangian 
subproblem: 

L(x, λ) = F(x)+
∑m

i=1
λi • g(x), (12) 

here, λi are the Lagrange multipliers, while g(x) represents the con
straints.

To linearize the nonlinear constraints the sequential quadratic sub
problem is obtained by the following: 

1
2
dTHk +∇F(xk)

Td 

Table 1 
The lower limits, upper limits and initial values of design parameters assumed in 
the optimization analyses.

Symbol Description Lower 
limit 
bmin

Upper 
limit 
bmax

Initial

hs1 (mm) height of the first section of the 
web

10 20 16.2

hs2 (mm) height of the stiffener of the 
web

1 15 13.4

hs3 (mm) height of the second section of 
the web

30 40 37.3

ws1 (mm) width of the first section of the 
web

1 15 5.95

ws2 (mm) width of the stiffener of the web 1 15 11.6
ws3 (mm) width of the second section of 

the web
10 30 16.7

hp1 (mm) height of the stiffener of the 
flange

5 10 6.5

wp1 

(mm)
width of the stiffener of the 
flange

10 40 30.1

wp2 

(mm)
width of the sections of the 
flange

10 40 27.3

wp3 

(mm)
width of the bottom flange 20 40 39.3
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∇gi(xk)
Td+ gi(xk) = 0 

∇gi(xk)
Td+ gi(xk) ≤ 0 (13) 

Hk is the approximation of the Hessian matrix. The approximation of 
the Hessian matrix is computed according to the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method [26–29].

The new solution is obtained iteratively: 

xk+1 = xk + αkdk (14) 

αk is a step length parameter.

2.3. Designing of trapezoidal metal sheet according to Eurocode 3

The great slenderness of the walls of the cross-section of trapezoidal 
sheet causes their vulnerability to local and distortional buckling [30]. 
Local buckling is related to the loss of stability of the central surface of 
the wall of a thin-walled element without changing the position of the 
corners of the cross-section. The distortion is revealed by displacement 
of corners caused by buckling of adjacent walls. On the other hand, in 
case of general buckling, all corners of the cross-section change their 
position. The influence of local and distortion instability is taken into 
account in calculation of the load capacity by limiting the geometric 
characteristics of the gross cross-section to the geometric characteristics 
of the equivalent cross-section. It is provided by reducing the actual 
width of the walls to the effective widths.

2.3.1. Thickness and thickness tolerances
Thickness and its tolerances given in the standard [20] may be used 

for steel within the following ranges of the core thickness (tcor) in terms 
of sheeting and members: 0.45 mm - 15 mm. It is permissible to use 
thicker or thinner material. In such situation, the bearing resistance has 
to be confirmed by tests. The design thickness denoted by t depends on 
the core thickness and minus tolerance. For tolerance less than or equal 
to 5 %, the design thickness is equal to the core thickness. The core 
thickness is equal to the nominal thickness tnom decreased by the metallic 
coating thickness, which is assumed to be 0.04 mm for zinc coating.

2.3.2. Geometrical proportions
The regulations given in the standard [20] cannot be applied for 

cross-sections outside the range width-to-thickness ratio shown in the 
Table 5.1 of the standard. If the properties of the effective cross-section 
are confirmed by testing and calculations, those limits can be ignored.

2.3.3. Influence of rounded corners
Rounded corners of cross-sections complicate the calculation of 

geometric and strength characteristics. In order to facilitate the calcu
lation of those characteristics, the standard regulations allow for the 
simplification of the cross-section geometry by eliminating rounded 
corners from the cross-section and leaving flat walls with the conven
tional width. Rounded corners can be neglected if the internal radius is 
less or equal five times design thickness and less or equal 0.10 bp 
(notional flat width).

2.3.4. Determination of geometric characteristic of the effective cross- 
section

The effective widths of unstiffened elements should be obtained from 
[20]. Width of the wall is assumed as notional flat width bp. The 
reduction factors for plate buckling are obtained basing on the plate 
slenderness λp.

2.3.5. Trapezoidal sheeting profiles with intermediate stiffeners
The procedure of determining geometrical characteristics of the 

effective cross-section of the flange will be presented in the forthcoming 
sections.

Firstly, the effective widths b1,e1 and b1,e2, of the wall in the case of 
one stiffener and b1,e2 and b2,e1 respectively, in the case of two stiffeners 
must be determined. One must carry out the calculations as for flat walls 
without stiffeners and assuming that the flat parts are supported on both 
sides.

Secondly, for the cross-section of the effective stiffener (or stiffeners) 
determined in previous step, the critical elastic stress σcr,s depending on 
the number of stiffeners should be computed. For one central flange 
stiffener, the elastic critical buckling stress is obtained from: 

σcr,s =
4.2 kwE

As

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ist3

4bp
2( 2bp + 3bs

)

√

, (15) 

in which bs is the width of the stiffener, E is Young modulus, As and Is are 
geometrical characteristics of the stiffener and kw is a coefficient that 
allows for partial rotational restraint of the stiffened flange by the webs 
or other adjacent elements.

Thirdly, if the webs of the trapezoidal sheet are unstiffened, based on 
the elastic critical stress σcr,s determined in the second step, the relative 
slenderness λd according to formula 5.12d of the standard must be 
calculated. If the web of the trapezoidal sheet is also stiffened, the 
relative slenderness is calculated based on the modified σcr,mod value.

In the fourth step, depending on the relative slenderness obtained in 
the third step, the reduction factor χd due to distortion buckling (flexural 
buckling of the stiffener) according to formulas 5.12a to 5.12c of the 
standard are computed. For the coefficient χd determined in the previous 
step, the effective cross-section of the stiffener with reduced thickness 
tred according to 5.5.3.4.2(11) of the standard are determined. Above 
mentioned formulas, the formulas 5.12a to 5.12c are taking into account 
the impact of the slenderness of the element: 

χd = 1ifλd ≤ 0.65, (16) 

χd = 1.47 − 0.723λdif0.65 < λd < 1.38, (17) 

χd =
0.66

λd
ifλd ≥ 1.38 (18) 

The relative slenderness is obtained using the following relation: 

λd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
fyb

σcr,s
,

√

(19) 

where fyb is basic yield strength.
The determination of effective widths of the web with intermediate 

stiffeners will be presented in the forthcoming paragraphs. Firstly, one 
must determine the initial location of the neutral axis of the section 
composed of the effective sections of the flange and the gross sections of 
the web. Secondly, the effective widths from seff ,0 to seff ,n according to 
formulas (5.32) to (5.33 f) of the standard depending on the number of 
stiffeners must be computed: 

seff ,0 = 0.76t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
/
(γM0σcom,Ed)

√

, (20) 

where σcom,Ed is the stress in the flange under compression when the 
cross-section resistance is reached; 

seff ,1 = seff ,0, (21) 

seff ,2 = (1+ 0.5ha/ec)seff ,0, (22) 

seff ,3 = [1+
0.5(ha + hsa)

ec
]seff ,0, (23) 

seff ,4 = (1+ 0.5hb/ec)seff ,0, (24) 
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seff ,5 =

[

1+
0.5(hb + hsb)

ec

]

seff ,0, (25) 

in which ec is the distance from the effective centroidal axis to the system 
line of the flange under compression; ha, hb, hsa and hsb are dimensions 
connected with the part of the web under compression.

Thirdly, basing on the widths obtained in the second step one must 
verify whether the flat widths are fully effective. If not, calculated 
effective widths remain unchanged. If the conditions are met the effec
tive widths are revised using formulas from 5.34a to 5.38b of the stan
dard depending on the number of stiffeners in the web: 

• for unstiffened web, if seff ,1 +seff ,n ≥ sn, the entire web is effective, so 
the widths are revised in the following way: 

seff ,1 = 0.4sn (26) 

seff ,n = 0.6sn (27) 

for stiffened web, if seff ,1 +seff ,2 ≥ sa, the whole length of sa is effec
tive, so the revision is as follows: 

seff ,1 =
sa

2 + 0.5ha/ec
(28) 

seff ,2 = sa
1 + 0.5ha/ec

2 + 0.5ha/ec
(29) 

for web with one stiffener, if seff ,3 +seff ,n ≥ sn, the whole length of sn is 
effective, therefore, the widths are revised in the following way: 

seff ,3 = sn
1 + 0.5(ha + hsa)/ec

2.5 + 0.5(ha + hsa)/ec
(30) 

seff ,n = sn
1.5sn

2.5 + 0.5(ha + hsa)/ec
(31) 

for web with two stiffeners: 
o if seff ,3 +seff ,4 ≥ sb, the whole length of sb is effective, so the revision 

is as follows:

seff ,3 = sb
1 + 0.5(ha + hsa)/ec

2 + 0.5(ha + hsa + hb)/ec
(32) 

seff ,4 = sb
1 + 0.5hb/ec

2 + 0.5(ha + hsa + hb)/ec
(33) 

if seff ,5 +seff ,n ≥ sn, the whole length of sn is effective, so the widths are 
revised in the following way: 

seff ,5 = sb
1 + 0.5(hb + hsb)/ec

2.5 + 0.5(hb + hsb)/ec
(34) 

seff ,n = sb
1.5sn

2.5 + 0.5(hb + hsb)/ec
(35) 

Then, the elastic critical buckling stress σcr,sa for the web stiffener is 
determined: 

σcr,sa =
1.05kf E

̅̅̅̅̅̅̅̅̅̅
Ist3st

√

Asas2(s1 − s2)
(36) 

where s1 is obtained in the following way:
• for a single stiffener:

s1 = 0.9(sa + ssa + sc) (37) 

for the stiffener closer to the flange under compression, in webs with two 
stiffeners: 

s1 = sa + ssa + sb +0.5(ssb + sc) (38) 

s2 = s1 − sa − 0.5ssa (39) 

while kf is a coefficient that allows for partial rotational restraint of the 
stiffened web by the flanges. Conservatively, it may be taken as equal to 
1 what corresponds to a pin-jointed condition. Is is the second moment of 
area of a stiffener cross-section consisting of the fold width ssa and two 
adjacent strips, each of width seff ,1, about its own centroidal axis parallel 
to the plane web elements.

If the flanges are unstiffened, the reduction factor χd is obtained 
directly from σcr,sa. If the flanges are also stiffened, the reduction factor 
χd should be obtained using the method basing on the modified elastic 
critical stress σcr,mod: 

σcr,mod =
σcr,s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

[

βs
σcr,s
σcr,sa

]4
4

√ , (40) 

in which βs = 1 for a profile in axial compression, while 
βs = 1 − (ha +0.5hsa)/ec for a profile under bending.

This enables obtaining relative slenderness. Next, basing on the value 
of the relative slenderness, the reduction factor is determined. Then, the 
reduced effective area of the stiffener Asa,red is calculated using the 
reduced thickness: 

tred = χdt. (41) 

Asa,red =
χdAsa

1 − (ha + 0.5hsa)/ec
butAsa,red ≤ Asa. (42) 

The effective section properties can be refined iteratively by 
assuming the location of the effective centroidal axis basing on the 
effective cross-sections determined in the previous iteration. This iter
ation should be based on an increased basic effective width seff ,0.

3. Results

3.1. Optimization with respect to moment of inertia

In the optimization study, two types of cost function criteria were 
used. In this subchapter, the results from maximising the moment of 
inertia assuming the minimal cover width were presented. In Fig. 2, the 
results are presented for iterations of minimization algorithm. In Fig. 2a, 
the convergence of the design parameters is shown. For more details 
about the design parameters, please refer to Fig. 1 and Table 1. In 
Fig. 2b, the maximization of the moment of inertia (cost function, blue 
plot) and corresponding strength index (red plot) were demonstrated. 
The strength index was computed using the classic formula, i.e., by 
dividing the moment of inertia by the maximum coordinate with respect 
to the neutral axis of the cross-section. In Fig. 2c, the change of metal 
sheet width is plot, as the consequences of changing design parameters. 
Dashed line represents the upper limit set in the optimization, resulting 
from production capabilities.

In Table 2, the final optimal designs are shown. In the second column 
of the table, the optimal design parameters of trapezoidal sheet with 
respect to moment of inertia are shown. Moreover, the initial design 
geometry as well as the optimal design determined are demonstrated in 
Fig. 3a,b, respectively.

3.2. Optimization with respect to sheet cover width

In this subchapter, the results from maximising the sheet cover width 
assuming the minimal moment of inertia are presented. In Fig. 4, the 
results are showed for iterations of minimization algorithm. In Fig. 4a, 
the convergence of the design parameters is shown. For more details 
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about the design parameters, please refer to Fig. 1 and Table 1. In 
Fig. 4b, the maximization of the sheet cover width (cost function, blue 
plot) and corresponding inertia moment (red plot) are demonstrated.

In Fig. 4c, the change of metal sheet width is plot as the consequences 
of changing design parameters. Dashed line represents the upper limit 
set in the optimization, resulting from production capabilities.

As previously, the final optimal design is shown in Table 2. In the 

Fig. 2. Deriving optimal design of trapezoidal sheet with respect to moment of 
inertia: (a) design parameters convergence, (b) increasing moment of inertia as 
cost function maximization and (c) respecting the limitations of metal sheet 
width (1500 mm limit).

Table 2 
The initial and optimal design parameters in optimization in respect to: (i) 
moment of inertia and (ii) sheet cover width.

Physical quantity Optimal solution 
in respect 
to moment of inertia, I

Optimal solution 
in respect 
to sheet cover width, B

hs1 (mm) 19.5 15.8
hs2 (mm) 7.4 13.7
hs3 (mm) 40.0 37.3
ws1 (mm) 15.0 10.8
ws2 (mm) 11.7 14.0
ws3 (mm) 16.1 26.5
hp1 (mm) 10.0 5.2
wp1 (mm) 20.0 28.4
wp2 (mm) 22.4 17.5
wp3 (mm) 40.0 39.1
I (mm4) 1,130,130 

(119.1 %)
957,560 
(100.9 %)

B (mm) 955.2 
(100.0 %)

1 060.5 
(111.0 %)

Fig. 3. Trapezoidal sheet cross-sections: (a) initial design for starting optimi
zation, (b) optimal design in respect to moment of inertia and (c) optimal 
design in respect to cover width.

Fig. 4. Deriving optimal design of trapezoidal sheet with respect to sheet cover 
width: (a) design parameters convergence, (b) increasing moment of inertia as 
cost function maximization, and (c) respecting the limitations of metal 
sheet width.
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third column of the table, the optimal design parameters of trapezoidal 
sheet with respect to sheet cover width are demonstrated. Furthermore, 
for comparison, the initial design geometry as well as the optimal design 
achieved is presented in Fig. 3a,c, respectively.

4. Discussion

In the optimization study, two types of cost function criteria were 
considered. Both analysis gave different results, what was shown in 
Fig. 3. The multicriteria approach was not employed in the paper 
because it always requires assigning weight factors, which in our 
opinion would be subjective. In addition, the focus of the paper is on 
achieving better results relative to the initial case, which was actually a 
commercial profile, while still preserving its key characteristics from an 
industrial point of view.

In Fig. 3, inn the optimization in respect to moment of inertia, the 
design parameters demonstrated much higher fluctuations throughout 
the optimization process, please see Fig. 2a. Updating the parameters is 
more rapid, two types of parameter trends may be observed. Namely, 
hs3, ws1, hp1 and wp3, after a few iterations achieves its upper boundaries, 
thus, their maximization to elevate the moment of inertia seems to be 
unequivocal. Other parameters fluctuate; the highest activity in com
parison to its initial values may be observed for hs2 and wp1. It is worth 
noting that hs3 is maximized from the beginning with minor fluctuation 
in favour of hs1 and hs2. hs1 and hs2 determines the stiffening in the 
corner, thus, its length cannot be directly maximized, since it would 
cause local instability and therefore exclusion or weakening of the 
contribution of this part of the cross-section when calculating the 
moment of inertia.

The activity of the parameters has its reflection in the cost function 
(CF), please see Fig. 2b. Rapid increase in the CF is caused by maximi
zation of hs3, ws1, hp1 and wp3 (3rd iteration), simultaneously, the limi
tation in metal sheet width is violated, please see Fig. 2c. Further, the 
optimization algorithm seeks for solution that is not violating the con
straints. The violation is successively decreased with preserving high 
values of moment of inertia. In 12th iteration, the algorithm substan
tially changes selected parameters (hs1, hs2, ws2 and wp1), what has some 
reflection in CF, but it is more significant in metal sheet width. Similar 
behaviours may be observed in iterations 15 and for 19 – 21 for similar 
sets of parameters (for 15th iteration ws2, wp1 and wp2, and for 19th – 
21st iterations wp2 hs2, ws2, wp1 and wp2), here, smaller sheet width 
constraint violations were noticed. Slight effect may be also observed in 
27th iteration, however, with not so significant effects in parameters, CF 
or metal sheet width. To sum up, the biggest activity is noticed and the 
careful decision while optimal design in respect to moment of inertia 
must be taken for hs1, hs2, ws2 wp1 and wp2, i.e., for web: height of the first 
section, height of the stiffener, width of the stiffener and for flange: 
width of the stiffener and width of the sections, respectively.

The moment of inertia of the optimal design of trapezoidal sheet 
increased up to 1,130,130 mm4, which was 119.1 % of the initial value; 
the cover width, B, was the same as the initial design, and the metal 
sheet width of 1500 mm was also achieved, see the second column in 
Table 2.

In the optimization process concerning the width of the sheet cover, 
the design parameters demonstrated significant changes up to approxi
mately 6th iteration, after which their alterations became more gradual 
throughout the optimization process, please see Fig. 4a. Here, updating 
the values of selected parameters (ws1, wp1 and wp2) up to the last iter
ation was slow and stable –comparing to the optimization process in 
respect to moment of inertia. Obviously, wp1 and wp2 were crucial, 
because they directly determines the cover width, B. ws1 role was 
important because it influences the stiffening of the corner and thus may 
cause potential local instability of the web. Other parameters hold their 
values from approximately 10th iteration, namely, hs1, hs2, hs3, ws2, ws3, 
hp1 and wp3. Such behaviour has its reflection in cost function criteria 

and corresponding moment of inertia.
Up to 6th iteration, the cover width increases rapidly, above 1 

060 mm, see Fig. 4b, however, with violating the constraint of metal 
sheet width due to production (1500 mm), see Fig. 4c. Later, in the 
optimization process, the algorithm gradually reduces the cost function 
value while simultaneously decreasing the violation of the metal sheet 
width constraint to finally achieve non-violation for relatively high 
cover width. The positive effect was the gradual increase of the moment 
of inertia.

The cover width of the optimal design of trapezoidal sheet increased 
up to 1 060.5 mm, which was 111.0 % of the initial value; the moment 
of inertia, I, was slightly bigger than for the initial design (100.9 %), and 
the metal sheet width of 1500 mm was also achieved, see the third 
column in Table 2.

The comparison of the geometry of the initial design and the optimal 
designs makes it possible to draw general conclusions regarding optimal 
structures depending on the adopted criterion, see Fig. 3. The optimal 
design in regard to the moment of inertia has larger stiffeners in the 
flange with no cross-sectional exclusion, a more vertical web and larger 
sheet bending angles, both in the web and in the flange. The optimal 
structure in regard to the cover width has delicate stiffeners and a less 
steep web; also, bending angles are much smaller.

5. Conclusions

In the study, the optimization of trapezoidal sheets was conducted by 
parametrically determining the shape of the cross-section using the 
method presented in Eurocode 3. This method involves limiting the 
geometric features of the gross cross-sections to those of an equivalent 
section by reducing the actual width of the walls to effective widths, and 
segmentally reducing the walls thickness. The optimization presented 
independently sought the best solutions for: (i) maximum moment of 
inertia given a minimum required cover width, and (ii) maximum cover 
width while maintaining the effective moment of inertia of the cross- 
section.

The study demonstrated that the use of optimization algorithms al
lows to find solutions that improved the trapezoidal sheet performance, 
depending on the criterion considered, compared to a reference com
mercial solution. The results show that manufacturers adopt solutions 
with relatively large material reserves and that it is possible to reduce 
the cross-section without deteriorating other properties of the trape
zoidal sheet.
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