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The main goal of this paper is to present a robust calibration procedure of essential

material parameters of concrete models, based on both full-field measurements and

inverse analysis. The proposed method uses a simple laboratory test and home-made

correlation software alongside a fast camera. Usually, a full set of material model para-

meters of concrete can be determined through application of several different tests and

specimen conditions. A recent method requires just one test for identification of most

of the model constants. It reduces the time needed for testing and provides a relatively

fast calibration of the selected parameters through minimization of discrepancies both of

experimentally measured displacement fields on the specimen surface and of the

numerically computed corresponding quantities. A study of an efficient correlation

algorithm and of a reliable minimization gradient-based algorithm is also presented.

& 2013 Politechnika Wroc"awska. Published by Elsevier Urban & Partner Sp. z o.o. All rights

reserved.
1. Introduction

Concrete has a wide application in civil engineering, being
used as a typical construction material for modern buildings,
structure foundations, arch-gravity dams and soil stabiliza-
tion systems, to list just a few. Often, engineers need to
design or analyze concrete structures, working not only in the
linear elastic range but also far beyond that. Such advanced
analyses require appropriate constitutive modeling of the
material in order to capture its main characteristic and
behavior. Constitutive modeling of concrete has attracted a
lot of attention in many research fields in the last decades.
Researchers have developed a wide variety of models in
an attempt to capture and mathematically describe many
important features of concrete. Unfortunately, due to the
heterogeneous nature of such material, there is no single
hnika Wroc"awska. Publis

znan.pl (T. Gajewski), to
model capable of mimicking all of its characteristics, there-
fore great care needs to be taken in the selection of an
appropriate material model that has been designed to emu-
late expected behavior.

Concrete is a composite pressure-sensitive material with a
dramatically lower tensile strength than compressive strength.
An analysis of a structure that is majorly subjected to tensile
loading (which typically leads to the formation and propagation
of cracks normal to the axis of maximum principal stress) will
probably be done using the simple Rankine criterion [28], which
can reasonably well describe such a failure mode. Alternatively,
if respectively greater compressive loads are expected, the
Drucker–Prager criterion in its original form [7] or enhanced
with a cap yield surface [29] would be more suitable choice. For
structures both under tension and compression loading criteria
which combine these two models might be selected [8,11].
hed by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
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Fig. 1 – Typical yield surfaces of deviatoric sections for: (a) both the Rankine and the Drucker–Prager model and (b) the
Drucker–Prager model alone with a cap in the meridian plane.
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Typically, experimental results for concrete tend to indicate
that the strength envelope (failure surface) within principal
stress space is a deformed cone with three planes of symme-
try, which all intersect at the hydrostatic axis. The deviatoric
sections (octahedral plane projections) take the form of
rounded triangles whose shapes vary from almost triangular
with tensile and low compressive hydrostatic pressures to
almost circular with high compressive hydrostatic pressures
(see Fig. 1a). Triangularly shaped deviatoric sections corre-
spond to the Rankine criterion and circularly shaped sections
correspond to the Drucker–Prager criterion. Such variations in
the deviatoric section's shape can also be described in terms of
the so-called meridians, i.e. intersections of the failure surface
with the half-planes that begin at the hydrostatic axis
(see Fig. 1b). Such variations in the meridians of deviatoric
sections usually have exponential, hyperbolic or linear rela-
tions, depending on the failure criteria [1,18,26,27].

Additionally the tensile cracking or compressive crushing of
concrete usually leads to a degradation in its elastic stiffness,
which is not reflected by the standard plasticity models that
unload with an initial slope. Stiffness degradation can be
handled within the framework of fracture mechanics or damage
mechanics (using a proper localization limiter). The so-called
smeared crack models [31], popular in engineering applications,
can be interpreted as a special type of damage model [4,17].
However, provided that the energy dissipation caused by
localized fracture and the existence of a characteristic length
are properly taken into account, the cracking of concrete under
monotonic loading can also be approximated using a model
based exclusively on the theory of plasticity.

A group of constitutive models that suitably describes
these complex phenomena is based on a combination of
the flow theory of plasticity and damage mechanics. Plasti-
city models alone [5,6,8,19,23] are unable to capture the
stiffness degradation that has been observed in experiments.
On the other hand, damage models are unsuitable for
describing both the irreversible deformations and inelastic
volumetric expansion that occur during compression. Com-
binations of plasticity models and damage models [14–16,21]
usually consider plasticity with isotropic hardening and
enrich it with either isotropic or anisotropic damage.

The problem of selecting a proper material model suitable
for this specific kind of numerical analysis is complicated
further when taking into consideration another aspect, which
is how difficult the model is to calibrate. A compromise would
be to use a model that reasonably reflects the main features
of the material and has a relatively easy calibration proce-
dure. However, the more sophisticated the model is, the more
parameters there are to identify and the more complicated
the tests are. Using a simpler model, which thus has smaller
set of parameters to characterize, one can attempt to design a
simple and straightforward experiment, which could possibly
be enhanced by new measurement techniques that help to
extract more information from the test. A number of modern
techniques that enrich the standard tests can be applied,
using equipment that is available on today's market (e.g.
thermal imaging, vibrations registration, body motion track-
ing and waveguide sensors). Among these techniques is
digital image correlation (DIC), which belongs to a group of
visual non-contacting methods that track the deformation
or motion of recorded objects [30]. DIC is often used as a
measurement tool within an inverse procedure for the
characterization of material properties (cf. e.g. [9,10,12]). This
primarily is because a certain amount of information taken
from such measurements helps, not only to regularize the
inverse problem but also to extend the number of possible to
identify parameters from a single test.
2. Experimental setup

The proposed procedure is based on a simple compression
uniaxial test of a normalized cubic concrete specimen. The
compression test is performed under standard conditions, e.
g. with the specimen compressed on top of a rigid base the
quasi-static loading velocity ranging from 0.2 to 1.0 MPa/s,
and the strain rate not exceeding 10−6 1/s.

The experiment is carried out on an Instron 8500 (http://
www.instron.tm.fr) four-column frame servohydraulic fati
gue testing machine with compressive force capacities of up
to 1000 kN (see Fig. 2a). These electronically controlled and
versatile systems can perform static, fatigue and dynamic
tests on various materials.

From the experimental data (i.e. experimental curve) result-
ing from a standard displacement-controlled test, one can
determine the elastic modulus E, the compressive strength sc,
possibly the crushing energy G and the stiffness degradation d
so long as cycling loading is applied (see Fig. 3). However, our
goal is to determine more parameters (without involving other
experiments). Therefore the standard compression test must be
improved through additional experimental techniques. Here,
non-contacting full-field measurements of displacements on



F
a

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 ( 2 0 1 4 ) 1 7 0 – 1 8 0172
the side surface of the specimen are taken so as to enrich the
experimental data. The deformation field recorded by the
camera is fully calibrated with an applied load or displacement,
so the corresponding field of displacements can be determined
during each stage of the experiment. This makes it possible to
build a test simulation in which all experimental conditions can
be reconstructed. The only unknown parameters of the numer-
ical model are the materials' constants. Therefore by applying
an inverse analysis, an initial guess of the unknown parameters
can be made and iteratively improved on through minimization
of the discrepancy between the numerically computed measur-
able quantities and the experimentally measured ones.
2.1. DIC equipment and correlation algorithms

Digital image correlation is a technique developed for the
determination of displacements and strains, based on the
acquisition and comparison of relevant digitized pictures.
The experimental equipment used to acquire digital images
in this work is displayed in Fig. 2b. The system uses the high-
speed Phantom v711 camera (http://www.visionresearch.com/
Products/High-Speed-Cameras/v711) at a resolution 800�800
pixels.

The accuracy of measurements for a given image resolu-
tion and monitored area size can be easily estimated using
the empirical formula h=w, where h is a pixel size and w is
either 10 or even 100 depending on the selected correlation
algorithm. Producers of the DIC systems suggest to compute
Fig. 3 – Experimental curve of concrete from a

specimen during
experiment

digital camera
(with axis normal to specimen)

compression
computer system

ig. 2 – (a) Instron 8500 testing machine and (b) image
cquisition system.
the accuracy using the formula

accuracy¼ max picture length
100:000

: ð1Þ

In practice, the denominator in Eq. (1) should rather be one
order of magnitude lower. Here, a front-facing surface of a
concrete specimen has been recorded as pictures of a size of
approximately 100�100mm. According to the aforementioned
practical outline, the accuracy of such measurements will be
either 1 or 10 μm. Consequently, the smallest change in dis-
placement that can be caught on digital camera is equal to
either 1 or 10 μm. This accuracy directly affects the require-
ments of a DIC measurement system. Therefore, the displace-
ments between two correlated images should be large enough
to allow for recordable measurements error. This restricts the
number of images which can be used in a DIC setup.

In the case of a compressive uniaxial test of a specimen of
100 mm in height, the recorded displacements can be lower
than the assumed accuracy of DIC system. Fig. 4 demon-
strates such cases for the x-direction displacement (a)
(applied to 50% of the total displacement U) and (b) for
y-displacement (applied to 10% of total displacement U),
where a lighter color represents a region where the displace-
ment is lower than the accuracy and a darker color indicates
a region where the displacement is greater then an accuracy
of 10 μm. Therefore only darker color regions can be taken
into consideration during DIC procedure.

The acquired grayscale photographs are recorded in digi-
tized form, so each pixel represents a number, which ranges
from 0 to 255. The lowest value represents black, the highest
value white, numbers in between correspond to different
shades of gray. Digital image correlation therefore becomes a
compression displacement-controlled test.

0.5U 0.1U

Fig. 4 – Acquisition fields of displacements captured by a DIC
system: (a) in the x-direction and (b) in the y-direction.
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task of comparing two subsets of numbers of two digital
images. A typical function, which measures how well two
subsets match to each other, is

S x; y;u; v;
∂u
∂x

;
∂u
∂y

;
∂v
∂x

;
∂v
∂y

� �
¼ 1−Ciðf ðx; yÞ; gðx′; y′ÞÞ ð2Þ

where Cð � Þ is a correlation function that gives a value of one
if a full correlation is achieved, f ðx; yÞ is the gray level pixel-
value at coordinate (x,y) of the reference image and gðx′; y′Þ is
the gray level pixel-value at point ðx′; y′Þ of the second image
of the deformed specimen. The coordinates (x,y) and ðx′; y′Þ
are related by the deformation which has occurred in the
time between the acquisition of the two images.

If the motion of the object relative to the camera is parallel
to the image plane, then the coordinates are given by

x′¼ xþ uþ ∂u
∂x

Δxþ ∂u
∂y

Δy ð3Þ

y′¼ yþ vþ ∂v
∂x

Δxþ ∂v
∂y

Δy ð4Þ

where u and v are the displacements of the subset centers
in the x- and y-directions, respectively. The terms Δx and Δy
are the distances from the subset center to point (x,y).
All unknown values u, v, ∂u=∂x, ∂u=∂y, ∂v=∂x, and ∂v=∂y
gathered in a vector p can be found by minimizing the
correlation coefficient S.

Correlation criteria are usually classified into two common
families, namely those of cross-correlation (CC) and sum-
squared difference (SSD) correlation. The typical correlation
functions used for the evaluation of the similarity between
the reference and the deformed subset have been gathered
into Tables 1 and 2, see [25].

In the formulas presented in the tables the mean value of
pixel shade intensity within a single reference subset of the
Table 1 – Commonly used cross-correlation criterion:
cross-correlation (CC), normalized cross-correlation
(NCC), zero-normalized cross-correlation (ZNCC).

CCC ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M
½f ðxi; yjÞgðx′i; y′jÞ�

CNCC ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M

f ðxi; yjÞgðx′i; y′jÞ
f g

" #

CZNCC ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M

½f ðxi; yjÞ−fm� � ½gðx′i; y′jÞ−gm�
ΔfΔg

" #

Table 2 – Commonly used sum-squared difference cri-
terion: sum-squared difference (SSD), normalized sum-
squared difference (NSSD), zero-normalized sum-
squared difference (ZNSSD).

CSSD ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M
½f ðxi; yjÞ−gðx′i; y′jÞ�2

CNSSD ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M

f ðxi; yjÞ
f

−
gðx′i; y′jÞ

g

" #2

CZNSSD ¼ ∑
M

i ¼ −M
∑
M

j ¼ −M

f ðxi; yjÞ−fm
Δf

−
gðx′i; y′jÞ−gm

Δg

" #2
undeformed picture fm is calculated using the formula

fm ¼ 1

ð2Mþ 1Þ2 ∑
M

i ¼ −M
∑
M

j ¼ −M
f ðxi; yiÞ ð5Þ

and in the corresponding reference subset of the deformed
picture using

gm ¼ 1

ð2Mþ 1Þ2 ∑
M

i ¼ −M
∑
M

j ¼ −M
gðx′i; y′iÞ: ð6Þ

The norms of the reference subsets in the undeformed and
the deformed pictures are computed respectively using

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ −M
∑
M

j ¼ −M
½f ðxi; yiÞ�2

s
; ð7Þ

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ −M
∑
M

j ¼ −M
½gðx′i; y′iÞ�2

s
: ð8Þ

The normalized norms of the reference subsets in the
undeformed and the deformed pictures are computed using
the corresponding formulas

Δf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ −M
∑
M

j ¼ −M
½f ðxi; yiÞ−fm�2

s
; ð9Þ

Δg¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i ¼ −M
∑
M

j ¼ −M
½gðx′i; y′iÞ−gm�2

s
; ð10Þ

where M is the distance in pixels from the center of the
reference subset to the furthest pixel in either the horizontal
or vertical direction.

It can be proved that the CC and SSD criteria families are
directly related, e.g. ZNCC criterion can be easily derived
from the ZNSSD correlation criterion, namely CZNSSDðpÞ ¼ 2
½1−CZNCCðpÞ�. Similarly, the other criteria can each be com-
puted from each other. Moreover, it is worth noting that if the
intensity values of the gray pixels on a certain image are
transformed using the linear function g′ðx′; y′Þ ¼ a� gðx′; y′Þ þ
b (see e.g. [25]), the values of the ZNCC and ZNSSD correlation
criteria will not change. Therefore the ZNCC and ZNSSD
correlation criteria serve as an extremely robust noise-proof
correlation tool, which is insensitive to offsets and linear
changes in illumination lighting. Correspondingly, although
the NCC and NSSD correlation criteria do not appear to be
sensitive to linear changes in illumination lighting, they are
sensitive to offsets in lighting. The least robust performances
are shown by those that use CC and SSD correlation criteria,
which are sensitive to all variations in lighting.

DIC picture acquisition. The 2D DIC method requires the
following steps to be performed: (1) specimen and experi-
mental preparations; (2) the recording of images of the planar
specimen surface before and after loading; (3) the processing
of the acquired images using a computer system in order to
obtain the desired displacement and strain information.

In order to uniquely identify the position of small sets
of pixels the specimen surface must have a random gray
intensity distribution (i.e. a random speckle pattern), which
will deform with the specimen surface. For details on this, see
[30]. The speckle pattern can be formed using the natural
texture of the specimen surfaces, constructed artificially
through the spraying of black and/or white paints, or using
other techniques. It is important for the camera to be placed
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Fig. 6 – Schematic illustration of a square subset: (a) before
deformation (reference) and (b) after deformation.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 ( 2 0 1 4 ) 1 7 0 – 1 8 0174
with its optical axis normal to the specimen surface, hence
projecting the planar specimen surface in different loading
states onto its sensor plate (see Fig. 2b).

In a routine implementation of the 2D DIC method, the
calculation area (i.e. region of interest or ROI) of the
reference image should be specified or defined at first,
which is then further divided into evenly spaced virtual
image points (zones of interests or ZOIs) as shown in
Fig. 5a. Displacements are computed at each point on the
virtual grid to obtain the full-field deformation (see e.g.
[25,30]). The main idea of 2D DIC, as has been mentioned
already, is to record two images before and after deforma-
tion and then to track deformation of the same points (or
pixels) between them. This is shown schematically in Fig. 6.
In order to compute the displacements of a point P, a
square reference subset of ð2Mþ 1Þ � ð2Mþ 1Þ pixels cen-
tered at point Pðx; yÞ in the reference image is selected so it
can be used to track the point's corresponding location in
the deformed image. A square subset, rather
than an individual pixel, is selected for matching since a
subset with a wider variety of gray levels of pixels can be
more easily distinguished from other subsets. Therefore
each deformation can be more easily identified within
the image.

Correlation algorithms. In this study, a professional camera
was used with no built-in software. Therefore the correlation
algorithm was implemented in an attempt to compute dis-
placements from a series of images. Herein two recognized
and widely used algorithms were implemented as Matlab [22]
subroutines. These were later checked for accuracy, correla-
tion time and robustness, and then compared against
each other.

Firstly, a coarse-fine search technique was employed to
study image correlation. The algorithm checked many
possible variable combinations within a given range and
compared the correlation factors for each set. Since a large
number of calculations was required, this technique was
usually only applied to determine the values of u and v.

Due to the discrete nature of the digitized image, no gray
level information was available for the space between the
pixels. If only pixel center coordinates were used for x, y in
Eq. (2), the displacements and gradient terms would not be
independent. Therefore, the gray pixel-level values of the
space between the pixels needed to be approximated.
For the coarse-fine search method, bilinear interpolation is
often used. Such interpolation approximates the gray level
value at a point ðx′; y′Þ, which is between the pixels (i,j),
ðiþ 1; jÞ, ði; jþ 1Þ and ðiþ 1; jþ 1Þ, by the formula

gðx′; y′Þ ¼ a00 þ a10ðΔxÞ þ a01ðΔyÞ þ a11ðΔxÞðΔyÞ ð11Þ

where a00 is a gray level value of pixel (i,j), a10 is a gray level
value of pixel ðiþ 1; jÞ−a00, a01is a gray level value of pixel ði; jþ
1Þ−a00 and a11is a gray level of pixel ðiþ 1; jþ 1Þ−a00−a10−a01.
Δx and Δy are the x and y distances from pixel (i,j). If one
would like to obtain a higher accuracy, bicubic spline inter-
polation can be used. The functional form for the gray level
value at ðx′; y′Þ, which is between pixels (i,j), ðiþ 1; jÞ , ði; jþ 1Þ,
and ðiþ 1; jþ 1Þ, and uses a bicubic spline

gðx′; y′Þ ¼ ∑
3

i ¼ 0
∑
3

j ¼ 0
aijΔxiΔyj ð12Þ

where aij are the coefficients which can be calculated based
on given boundary conditions using the f function values.
Its first order derivatives fx, fy and cross derivative fxy exist at
nodal locations. The coefficients must adhere to the condi-
tion that all first order and cross derivatives are continuous
between adjacent surfaces, see [2].

An alternative to the aforementioned is the Newton–
Raphson method, which is capable of finding the six defor-
mation parameters that can be applied to minimize the
correlation function (2), which are u, v, ∂u=∂x, ∂u=∂xy, ∂v=∂x,
and ∂v=∂y. This technique allows these parameters to be
determined with less computational processing than the
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previous coarse-fine search method. The Newton–Raphson
method is based on the calculation of correction terms,
which improve on previously determined initial guesses.
The correction for a single estimate i is given by

Δp¼−H−1ðpÞ∇ðpÞ ð13Þ
where p is equivalent to ½u; v; ∂u=∂x; ∂u=∂y; ∂v=∂x; ∂v=∂y�T and
∇ðpÞ is the Jacobian matrix. Each element of the Jacobian
matrix is a derivative of the correlation function evaluated for
a guess i. The Jacobian matrix is as follows:

∇ðpÞ ¼ ∂S
∂pi

; ð14Þ

HðpiÞ is the Hessian matrix, which is the second partial
derivative of the correlation function

HðpÞ ¼ ∂2S
∂pi∂pj

: ð15Þ

The Newton–Raphson algorithm (NRA) must first obtain an
initial estimate of the deformation parameters p, which are
later added to the initial guess and the process is iterated
until convergence is obtained. This algorithm requires the
starting guess to be relatively close to the required solution,
hence requiring an additional method of starting point
selection. This can be easily done by performing a correlation
of the four corners of the ROI (see Fig. 5) using a course-fine
algorithm (CFA) on the pixel level. By linear (shape) inter-
polation of the calculated estimates one can guarantee
decent starting points for the subsequent ZOI regions' corre-
lation so long as the deformations are continuous within
the ROI.

In order to compare the performance of the two previously
discussed algorithms, a simple example of the correlation of
Fig. 7 – A ZOI selected from (a) the ROI (i.e. the white square),
(b) a reference ZOI position, (c) the converged position of
reduced ZOI, and (d) the position of ZOI in the deformed
configuration.

Table 3 – ZOI's pixel displacement and deformation computed

Algorithm u v

CFA + bicubic interpolation −0.258 −3.90
NRA −0.571 −3.51
a single square 101�101 region (see Fig. 7a) from a ROI drawn
on a sample surface (see Fig. 5) is presented here. In Fig. 7c
the converged solution on a reduced size ZOI consisting of
21�21 pixels is shown. The result was obtained using a two-
step procedure: firstly, the course-fine approximation was
found and secondly, the Newton–Raphson method was
employed. In Fig. 7b the reference ZOI is shown, whereas in
Fig. 7d deformed ZOI is depicted.

The performance of both CFA with bicubic interpolation
and NRA is presented in Table 3. It is clear from the above
comparison that NRA performs much better then CFA with
bicubic interpolation for two reasons: (1) it provides more
information in a shorter time and (2) it gives more accurate
results in terms of ZOI center position.

2.2. Inverse analysis and minimization algorithm

Once the displacement field for discrete points on the specimen
surface is computed via the selected correlation algorithms and
with sufficient accuracy, one can start to simulate an experi-
mental test. In order to do this, the following features of the
numerical model need to be ascertained: (a) the description of
geometry, (b) the boundary conditions, (c) the initial conditions,
and (d) the properties of all of the involved materials (i.e. the
constitutive constants). From this list, three factors are directly
dependent on the experimental setup. The only unknowns are
therefore the materials' parameters. By using an initial guess
of the model constants, which could, for example, be gathered
using expert knowledge or literature, a solution a reasonably
accurate can be made. From this point on, through iteratively
employing inverse analysis, the unknown material parameters
can be identified.

The inverse analysis (also known as back-calculation
analysis) method merges the numerically computed UNUM

and experimentally determined UEXP measurable quantities
for discrepancy minimization. A vector of residua R can be
constructed in the following way:

R¼UEXP−UNUMðxÞ: ð16Þ

This measures the differences between the aforementioned
measurable quantities. By adjusting the constitutive para-
meters (encapsulated in the vector x) embedded in the
numerical model, which in turn mimic the experimental
setup, an iterative convergence towards the required solution
can be achieved. The minimization of the objective function
ω (within the least square frame) takes the form

ω¼ ∑
n

i ¼ 1
ðRiÞ2 ¼ ∥R∥22 ð17Þ

and is usually updated through the use of first-order (gradient-
based) or zero-order (gradient-less) algorithms. Procedures based
on a soft method (e.g. genetic algorithms, simulated annealing,
using both CFA with bicubic interpolation and NRA.

∂u=∂x ∂u=∂y ∂v=∂x ∂v=∂y

– – – –

0.0016 0.0016 0.0051 −0.0078
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particle swarm algorithms) can be also used for function
minimization, especially when the function is non-convex
and so has many local minima. However, such algorithms
usually require many iterations. Among the many first-order
procedures that are based on either the Gauss–Newton or the
steepest descent direction in a nonlinear least square methods,
the trust region algorithm (TRA) seems the most effective. The
TRA uses a simple idea, similar to that in Levenberg–Marquardt
(LM) algorithm (see e.g. [24]), which performs each new step in a
direction combining the Gauss–Newton and steepest descent
directions. The LM algorithm computes new directions using
the following formula:

Δx¼−ðHx þ λIÞ−1gx ð18Þ

where λ is an internal parameter, gx ¼∇ωðxÞ is the gradient of
the objective function ω with respect to the parameters x

gx ¼ ∂ω
∂x

; ð19Þ

and the Hessian Hx ¼∇2ωðxÞ is a second partial derivative of ω
with respect to the parameters x

Hx ¼
∂2ω
∂x2 ; ð20Þ

In the nonlinear least square approach method, the gradient
and Hessian matrix can be computed using the Jacobian matrix

JðxÞ ¼ ∂R
∂x

ð21Þ

so the gradient and Hessian matrix are defined, respectively

gðxÞ ¼ JTR; HðxÞ≃JTJ: ð22Þ

Such approximation of the Hessian, which can be computed
‘for free’ once the Jacobian is available, represents a distinctive
feature of least squares problems. This approximation is valid if
the residuals are small, meaning we are close to the solution.
Therefore some techniques may be required in order to ensure
that the Hessian matrix is semi-positive defined (see e.g. [24]).

One of the main issues of the trust region approach, which
to a large extent determines the success and the performance
of this algorithm, is in deciding how large the trusted region
should be. Allowing it to be too large can cause the algorithm
to face the same problem as the classical Newton direction
line search, when the model function minimizer is quite
distinct from the minimizer of the actual objective function.
On the other hand using too small a region means that the
algorithm will miss the opportunity to take a step substantial
enough to move it much closer to the solution.

Each k-th step in the trust region algorithm is obtained by
solving the sub-problem defined by

min
dk

mkðdkÞ ¼ f ðxkÞ þ dT
k∇f ðxkÞ þ

1
2
dT
k∇

2f ðxkÞdk; ∥dk∥≤Δk ð23Þ

where Δk is the trust region radius. By writing the unknown
direction as a linear combination of Newton and steepest
descent direction, the sub-problem will take the following
form:

minmkðxkÞ ¼ f ðxkÞ þ ½s1dSD
k þ s2d

N
k �T∇f ðxkÞ

þ1
2½s1d

SD
k þ s2d

N
k �T∇2f ðpkÞ½s1dSD

k þ s2d
N
k � ð24Þ
under the constrains

∥s1dSD
k þ s2d

N
k ∥≤Δk: ð25Þ

The problem now becomes two-dimensional and it is solved
for the unknown coefficients s1 and s2. In order to find both s1
and s2 in Eq. (25) a set of nonlinear equations can be solved
using, for example, the Newton–Raphson techniques that were
mentioned in the previous section. Herein this approach is
implemented using an inverse procedure to compute the
discrepancy minimization between the displacement measured
by DIC and the corresponding ones computed by the numerical
model. The numerical model thus still requires a constitutive
model to be selected and tuned using inverse analysis.

2.3. Selected constitutive model of concrete

In this work, the Lubliner type of constitutive model is used
(see [20]). The model can capture most of the characteristics
of concrete, keeping the number of parameters at a reason-
able practical level (see [13,32,33]). The Lubliner yield criterion
takes the form

1
1−α

ð
ffiffiffiffiffiffiffi
3J2

p
þ αI1 þ β〈smax〉−γ〈−smax〉Þ ¼ c; ð26Þ

where α, β and γ are dimensionless constants to be calibrated
by the experiments, J2 is the second invariant of the devia-
toric stress tensor, I1 is the first invariant of the stress tensor,
smax is the maximum principal stress, c is the compressive
cohesion and the Macaulay brackets 〈 � 〉 are defined as
〈x〉¼ ðjxj þ xÞ=2.

It is noted here that Eq. (26) is actually a form of the yield
criterion after being calibrated using uniaxial compression,
from which the original form can be derived asffiffiffiffiffiffiffi

3J2
p

þ αI1 þ β〈smax〉−γ〈−smax〉−δc¼ 0; ð27Þ

where δ is a fourth dimensionless constant. When concrete
yields during uniaxial compression, J2 ¼ c2=3, I1 ¼ c, and smax ¼
0. Substituting these into (27), we get δ¼ 1−α, and the original
form in (27) becomes the commonly used form in (26).

The form of the Lubliner yield criterion depends on the
sign of the maximum principal stress smax. We can distin-
guish between three possible scenarios:
(1)
 smax40, i.e. tensile stress is present, so (26) reduces to

1
1−α

ð
ffiffiffiffiffiffiffi
3J2

p
þ αI1 þ βsmaxÞ ¼ c; ð28Þ
(2)
 smax ¼ 0, for uniaxial or biaxial compression, so (26)
reduces to

1
1−α

ð
ffiffiffiffiffiffiffi
3J2

p
þ αI1Þ ¼ c ð29Þ
(3)
 smaxo0, for triaxial compression, so (26) reduces to
1

1−α
ð

ffiffiffiffiffiffiffi
3J2

p
þ αI1 þ γsmaxÞ ¼ c: ð30Þ

Eq. (28) can be regarded as a combination of the Drucker–
Prager criterion, which describes shear failure mechanisms,
and the Rankine criterion, which describes tensile failure



Table 4 – Reference values of parameters used for sensi-
tivity and inverse calculations.

Parameter Value

E (GPa) 30
Ψ ð○Þ 38
Kc (–) 0.667
sc (MPa) 45
st (MPa) 4.5
H (GPa) 0.2
f b=f c (–) 1.16
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mechanisms. While (30) can be regarded as a modification of
the Drucker–Prager criterion which accounts for the changes
in the deviatoric sections (see Fig. 1a).

Usually, the parameter α is calibrated from Eq. (29) through
use of the uniaxial compressive strength fc and the equibiax-
ial compressive strength fbc as

α¼ f bc=f c−1
2f bc=f c−1

; ð31Þ

and then the parameter β is calibrated from (28) using the
uniaxial compressive strength fc and the uniaxial tensile
strength ft as

β¼ ð1−αÞf c=f t−ð1þ αÞ: ð32Þ

The parameter γ is calibrated from (30) by making use of the
ratio Kc between

ffiffiffiffi
J2

p
on the tensile meridian and that on the

compressive meridian at a given hydrostatic pressure in
triaxial compression as [33,32]

γ ¼ 3ð1−KcÞ
2Kc−1

ð33Þ

The plastic flow rule of a material model of concrete
usually assumes a non-associative potential flow, meaning
the increment of plastic deformations is normal to a plastic
flow function rather than to a yield function. The inelastic
deformation increment is, therefore, computed as follows:

_εpl ¼ ∂G
∂r

ð34Þ

The flow potential of the Lubliner model implemented here is
the Drucker–Prager linear function

G¼ t−p tan ψ ; ð35Þ

where

t¼ 1
2
q 1þ 1

Kc
− 1−

1
Kc

� �
r
q

� �2
" #

;

q¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2s : s

q
; r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
2s � s : s

q
; p¼ 1

3trðrÞ;

ψ is a dilation angle in the p−t plane and s is a stress deviator.
Therefore the set of parameters in the selected elasto-plastic

material model of concrete can be listed as: E—Young's modulus,
ν—Poisson's ratio, ψ—the dilation angle, Kc—the ratio between
deviator in tensile meridian and in compressivemeridian, fc—the
compressive strength, ft—the tensile strength, and fb—the
equibiaxial compressive strength.
3. Results

The selected results of the study on characterization of
concrete material constants are presented in this section.
As specified in previous sections, the following tools and
procedures are used in this study: (1) a simple uniaxial test
performed on a Instron 8500, (2) the DIC equipment, namely
the digital camera Phantom v711 and the Newton–Raphson
correlation algorithm, (3) an inverse procedure based on the
least square approach and an iterative TRA and (4) a finite
element (FE) numerical model for test simulation with
an implemented Lubliner-type material model of concrete
specimens.
The test simulation is performed here by making use of
the FE model, which is constructed with a quarter of the
geometry of an analyzed sample and is discretized using 4960
linear hexahedral elements with mean size of 0.004 m. Addi-
tional, intrinsic boundary conditions are applied so as to
double symmetry of structure. An implementation of the
Lubliner-type material model in Abaqus is used with para-
meters specified as in the previous section (the reference
parameters are shown in Table 4). In order to simplify the
identification procedure of the following numerical examples
the Poisson's ratio is assumed to be known and fixed at a
value of 0.2.

For the identifiability check of the sought parameters x the
local sensitivities of measurable quantities with respect to
model parameters are computed using a calibrated FE model.
The sensitivities are shown in Fig. 8, where each bar corre-
sponds to the norm of the displacement field computed using
the formula:

si ¼
∥ui∥−∥uREF∥
xi þ δxi−xi

xi
∥uREF∥

¼ ∥ui∥=∥uREF∥−1
δ

ð36Þ

where uREF is a reference displacement field computed using
an FE model and feed with a set of parameters shown in
Table 4; ui is a displacement field that has been computed
through perturbation of the parameter xi by 1% (δ¼ 0:01). The
higher bars in Fig. 8 indicate parameters, which are more
likely to be identified through use of DIC measurements.

In order to check the robustness of the proposed identifi-
cation method, a particular type of numerical test is selected
here as a benchmark, namely the pseudo-experimental
method. In such an approach, one generates from the
numerical FE model feed with known material parameters,
the pseudo-experimental data which is later noised and
truncated to an assumed testing equipment precision. Using
such data, one can be sure of the parameters which have to
be identified and so can provide proof that the procedure can
converge to the sought parameters. What is known in the
literature as ‘numerical crime’ is avoided here by using a
different numerical model for both the identification proce-
dure and for pseudo-experimental generation of data.

Figs. 9 and 10 demonstrate the convergence process for
two inverse analyses, each with individual initializations of
sought parameters values. Both results present successful
characterization of all sought parameters (with the exception
of tensile strength st which is not active in such test). The
minimum value of the cost function stabilizes after several
iterations (7–8 iterations). In the identification procedure
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presented here, six out of seven normalized parameters
(xi=x

ref
i ) converge to 1.0, meaning their values are equal to

the values of the parameters used to generate the pseudo-
experimental data (see Table 4). It should be noted that the
illustrated results refer to pseudo-experimental data that has
been noised and truncated to an accuracy of 10 μm.
4. Conclusions

Calibration of concrete material with its numerous constitu-
tive parameters usually requires several tests at different
level of difficulties and specimen configurations. Here, a
simple procedure combining a standard uniaxial test,
DIC measurements and inverse analysis highlights a success-
ful characterization of the selected material constants
for concrete. By a proper selection of identification tools,
namely a fast DIC algorithm, a robust minimization techni-
que and a careful selection of the appropriate constitutive
model for a numerical test simulation, one can easily
find a set of sought parameters from a single and typical
laboratory test.

The Newton–Raphson correlation algorithm surpasses in
performance the traditional course-fine algorithm, even if the
former is improved by the bicubic interpolation scheme. The
TRA that has been presented in this paper already has a wide
application in inverse analysis problems (see e.g. [9,10]), its
performance shown in this example proves its ability to find
fast solutions, which can be obtained even with just a few
iterations of highly noised data.

Additional equipment (such as a camera and DIC algo-
rithm) resulting in additional measurements from a single
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test, clearly helps to identify more parameters. Such an
approach, however, also requires a computer with specialized
software for both photograph correlation and numerical simu-
lations. This might be viewed as a limitation especially when
tests have to be performed on a routine basis in laboratories. A
remedy to the underlined limitation of the presented method
could be to preliminarily prepare the models and to simulate
the tests on a powerful computer, using a wide range of
variations in parameters, which can be later used to build an
approximation of the model. Using model reduction techniques
(such as artificial neural networks, polynomial approximation,
radial basis functions approximation, Gaussian processes, etc.),
one can speed up parameter identification (see e.g. [3,9,10]) by
several orders of magnitude.

The methodology presented in this paper of identification
of concrete parameters from a single test can furthermore be
successfully used without heavy computation so long that an
approximation of the direct model has been constructed. The
numerical model and/or its surrogate require the previously
presented combination of DIC measurements together with
a rapid correlation algorithm, and efficient experimental
and inverse techniques in order to provide a fast and robust
characterization of a complex model from a simple test. It is
evident from the presented examples that standard testing
information (i.e. the force-displacement curve) enhanced
with DIC measurement and inverse analysis can be used to
successfully calibrate a concrete material model.
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