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Abstract: Numerical homogenization is an excellent tool for the quick simplification of complex 
structures with a model that is much simpler and, at the same time, accurately reflects the 
mechanical behavior of the original model. Corrugated cardboard modeling, with all geometrical 
nuances preserved, is a complicated and time-consuming process. The transfer of a full 3D model 
of corrugated board composed of two flat layers and a corrugated middle layer to one layer only, 
with substitute elastic parameters, greatly simplifies this process. Because the individual layers of 
corrugated cardboard are made of paper with a grammage in the range of 80–200 g/m2, i.e., very 
thin plates, they are slightly buckled even in the initial configuration. These imperfections affect the 
equivalent parameters that are obtained in the homogenization process. This paper presents an 
approach of taking into account these imperfections when creating a simplified model. The 
numerical homogenization method based on the equivalence of elastic energy between a 
representative volumetric element (i.e., a part of a full 3D model) and an equivalent plate were 
applied. Different shapes of imperfections were analyzed in order to account for the buckling 
modes, notably for a specific unit deformation and curvature. Finally, one form of initial 
imperfections was proposed, which most accurately reflects the decrease in all plate stiffnesses. 

Keywords: corrugated cardboard; imperfections; numerical homogenization;  
strain energy equivalence; orthotropic plate; plate stiffness properties 
 

1. Introduction 
In recent years, there has been observed a constant growth in the popularity of 

corrugated board, which is widely used in the packaging industry. This was due to the 
great demand for packaging materials in the food, pharmaceutical and cosmetic 
industries. The COVID-19 global pandemic has contributed to the rapid growth of e-
commerce, driven by a significant increase in individual shipments and home orders. 

Nowadays, a strong argument in favor of the use of corrugated board is its eco-
friendliness. Cardboard packaging is very easy to recycle or dispose of. Packaging can be 
made with any color prints, which is an attractive option for e-commerce companies as 
they can freely shape the appearance of the packaging. 

The most important aspect of packaging is the appropriate protection of the goods 
during storage or transport. In order to correctly determine the load capacity of the 
packaging, a number of factors should be taken into account, such as the influence of 
humidity, the arrangement of perforations and holes, the type of the load or the location 
of the flaps. Manufacturers of cardboard packaging are searching for solutions that are 
economical and effective, which is why research on the durability and optimal design of 
corrugated cardboard products is constantly carried out [1,2]. Various tests are performed 
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to assess the load capacity of boxes, including compressive, tensile and bending strength. 
The most common tests are the box compression test (BCT) and the edge crush test (ECT). 

The load capacity of the packaging has been the subject of research conducted by 
many scientific groups for many years. As early as 1952, a formula for the strength of the 
packaging which takes into account the box perimeter, the overall ring crush strength and 
the box and corrugated layer constants was proposed [3]. Maltenfort presented the 
relationship between the critical force in BCT and the dimensions of the packaging based 
on the Concora liner test and empirical constants [4]. In 1963, McKee et al. proposed an 
approach that became one of the most popular methods of estimating the load capacity of 
packaging with a rectangular base [5]. The formula is based on the ECT value, box 
perimeter, bending stiffness of the walls and correction factors. The use of empirically 
determined correction factors reduces the versatility of the method because it is necessary 
to compute new values of these factors for each board quality and each packaging model. 

In 1968, a formula for estimating the strength of the regular package was presented. 
As the McKee formula, it was based on the package perimeter, the ECT and plate bending 
stiffness, and, additionally, also took into account the buckling factor, stacking time and 
load ratio [6]. In 1985, Allerby et al. proposed other constants and exponents of the McKee 
formula [7], and in 1987, Schrampfer et al. modified the McKee formula for more 
cardboard cutting methods and equipment [8]. Kawanishi presented a formula for the 
load capacity of the packaging, which depends on several important factors, such as the 
grammage of the cardboard layers, cardboard thickness, take-up factor, average 
corrugation count, perimeter and type of the box, moisture of the walls and printed ratio 
[9]. In 1993, Batelka and Smith proposed an extension of the McKee formula to several 
other types of boxes, taking into account the width and depth of the package [10]. 

The finite element method (FEM) is often used for numerical analysis of packaging 
strength. Urbanik and Frank used FEM to compare the strength of the packaging with a 
formula based on, e.g., the Poisson’s ratio [11]. Nordstrand and Carlsson performed FEM 
simulations to compare the obtained effective cardboard transverse shear moduli with 
analytical predictions and experimental results [12,13]. Urbanik and Saliklis presented 
observations of buckling phenomena of corrugated cardboard boxes modeled with FEM 
[14]. In 2011, an overview of the analytical and numerical load capacity estimation of 
corrugated board packaging was presented by Sohrabpour and Hellström [15]. 

The layered structure of the cardboard and the anisotropy of the paper make 
numerical modeling difficult due to the necessity of knowing the material parameters of 
all corrugated board layers. The solution to this problem is a process called 
homogenization. Homogenization allows to reduce the complicated cross-section of the 
corrugated board to one layer, which significantly simplifies the numerical model and 
shortens the computation time. Using this method, the equivalent stiffnesses and the 
effective thickness of the model should be determined to ensure the same behavior before 
and after homogenization. 

The analytical homogenization of corrugated board is based on the equations of the 
classical theory of material strength and the classical theory of laminates [16]. In numerical 
homogenization, the basic equations of the finite element method are also used. The 
authors in this work utilize the method proposed by Biancolini [17] and then extended by 
Garbowski and Gajewski [18], which is based on an energy balance between a 
representative volume element and an equivalent plate. Hohe presented a representative 
element of heterogeneous and homogenized elements, which is based on the strain energy 
[19]. By means of periodic homogenization, Buannic et al. obtained equivalent membrane 
and bending characteristics of the plates [20]. In 2010, Abbès and Guo determined the 
torsional stiffness of an orthotropic sandwich panel by splitting the panel into two beams 
[21]. In 2018, Ramírez-Torres et al. presented a multiscale asymptotic homogenization for 
a composite material with a layered hierarchical structure [22,23]. Gallo et al. proposed an 
approximation of the load capacity and deformation of a package while applying 
empirical observations [24]. The use of homogenization to analyze a thin-walled seating 
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made of triple-wall corrugated cardboard is presented by Suarez et al. [25]. Garbowski et 
al. investigated the effect of creasing or perforation on the stiffness of corrugated board 
[26]. Mrówczyński et al. performed a sensitivity analysis in optimal design of single- and 
double-walled corrugated board packaging [1,2]. Nguyen-Minh et al. verified the 
accuracy and reliability of the homogenization methods in the static analysis of 
trapezoidally and sinusoidally corrugated panels [27]. 

The load capacity of the corrugated board depends on several factors. One of them is 
the imperfections of the cardboard layers resulting from the production process. In 1995, 
Nordstrand carried out parametric tests to investigate the sensitivity of the load capacity 
with the size of initial imperfections [28]. The influence of geometrical imperfections on 
the mechanical properties was presented by Lu et al. [29]. Nordstrand modified the 
nonlinear buckling analysis of Rhodes and Harvey orthotropic plates to account for initial 
cardboard imperfections [30]. Garbowski and Knitter-Piątkowska presented an analytical 
method of determining the bending stiffness of double-walled corrugated cardboard with 
imperfections [31]. 

In the present article, an approach to account for the geometric imperfections of 
corrugated cardboard in numerical homogenization of single-walled corrugated board is 
presented. The approach presented in this paper extends and generalizes the 
homogenization methods already presented in our previous works. This generalization 
concerns geometric imperfections built into the material. They are always present due to 
the very thin layers of paper used in the production of corrugated board and, therefore, 
cannot be ignored. The presented here method allows to easily take into account these 
geometric imperfections and thus correctly calculate the sought effective stiffnesses. 

2. Materials and Methods 
2.1. Material Parameters and Corrugated Cardboard Geometry 

Corrugated cardboard is a fibrous material, and therefore it is highly orthotropic. The 
direction of the fibers in the individual cardboard layers determines the mechanical 
properties of the board components. For wood-based materials, two main directions can 
be distinguished: the machine direction (MD) and the cross direction (CD). The strength 
of paper and paperboard is more than twice as high in the MD than in the CD because the 
fibers are arranged along the MD in the production process (see Figure 1). In the cross 
direction, the material is more ductile, while in the machine direction, it is more resistant 
to tearing and crushing. 

The linear behavior of an elastic orthotropic material can be represented by the 
strain–stress relationship: 

⎣⎢⎢
⎢⎡ 𝜀𝜀2𝜀2𝜀2𝜀 ⎦⎥⎥

⎥⎤  =  ⎣⎢⎢
⎢⎡ 1/𝐸  −𝜈 𝐸⁄ 0 0 0−𝜈 𝐸⁄ 1 𝐸⁄ 0 0 00 0 1 𝐺⁄ 0 00 0 0 1 𝐺⁄ 00 0 0 0 1 𝐺⁄ ⎦⎥⎥

⎥⎤
⎣⎢⎢⎢
⎡𝜎𝜎𝜎𝜎𝜎 ⎦⎥⎥⎥

⎤, (1) 

where 𝐸  and 𝐸  are the Young’s moduli in the MD and the CD, respectively; 𝜈  and 𝜈  are the Poisson’s coefficients; 𝐺  is the Kirchhoff’s modulus; 𝐺  and 𝐺  are the 
transverse shear moduli. The symmetry of the material stiffness/compliance matrix allows 
us to determine the relationship between the Poisson’s coefficients and the Young’s 
moduli: 𝜈𝐸 = 𝜈𝐸  . (2) 
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Figure 1. The force-displacement curves in MD, CD and 45°. 

The material orientation is always the same in all layers of corrugated cardboard. The 
machine direction coincides with the cardboard wave direction, which results from the 
technological conditions of the production process (see Figure 2). The lower strength in 
the cross direction is compensated by a take-up factor of the corrugated layer. 

 
Figure 2. Material orientation. 

All corrugated board layers were modeled while using classical linear elastic or-
thotropy, see Equation (1). The material data were taken from the literature [17] and are 
presented in Table 1. The thickness of both flat layers (liners) and the corrugated layer 
(fluting) was assumed to be 0.30 mm. 

Table 1. Material data used in orthotropic constitutive model. 

Layers 
𝑬𝟏 𝑬𝟐 𝝂𝟏𝟐 𝑮𝟏𝟐 𝑮𝟏𝟑 𝑮𝟐𝟑 

(MPa) (MPa) (-) (MPa) (MPa) (MPa) 
liners 3326 1694 0.34 859 429.5 429.5 

fluting 2614 1532 0.32 724 362 362 

2.2. Homogenization Technique 
The numerical homogenization method proposed by Biancolini [17], and then ex-

tended by Garbowski and Gajewski [18] was utilized in the present study. This method is 
based on the provision of strain energy equivalence between the full representative vol-
ume element (RVE) of the corrugated board and the simplified shell model. The RVE is a 
small, periodically repeating segment of the full corrugated board structure model that is 
then simplified to a single layer of flat shell elements in such a way as to ensure the same 
behavior of the full and simplified model. Only the most important assumptions of the 
described method are presented below. The entire theoretical derivation of the constitu-
tive model can be found in [18]. However, it is important to note that for the evaluation of 
homogenized properties for macroscopic analysis, the concept of statistical RVE (SRVE) 
can be utilized [32–34]. 
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The nodal displacements can be determined while involving the finite element 
method (FEM). The FEM equation for linear analysis is shown below: 𝐊  𝐮 = 𝐅  , (3) 

where 𝐊  is a global stiffness matrix statically condensed to the external nodes of the 
RVE, 𝐮  is a displacement vector of the external nodes and 𝐅  is the vector of nodal 
forces applied to the external nodes. In Figure 3, the finite element mesh and nodes of the 
RVE are shown. 

 
Figure 3. Finite elements, external (in red color) and internal nodes of the corrugated cardboard. 

The global stiffness matrix was obtained by applying the static condensation process. 
It consists in removing selected unknown degrees of freedom (DOF) and determining the 
stiffness matrix for a smaller number of DOFs (called primary unknowns). In the dis-
cussed model, the internal nodes were removed, and for the external nodes, the stiffness 
matrix was determined from the following formula: 𝐊 = 𝐊 − 𝐊  𝐊 𝟏 𝐊  , (4) 

where all the subarrays K∗∗ contain the stiffnesses for external (subscript 𝑒) and internal 
(subscript 𝑖) nodes, which in matrix form relate nodal displacements and nodal forces: 𝐊 𝐊𝐊 𝐊 𝐮𝐮 = 𝐅𝟎  . (5) 

As a result of static condensation, the total elastic strain energy was reduced to the 
work of external forces on the corresponding displacements: 𝐸 = 12 𝐮  𝐅  . (6) 

The balance of the total strain energy between the full 3D RVE model and the simpli-
fied shell model was ensured by appropriate determination of nodal displacements and 
by enabling the membrane and bending behavior. The details can be found in [18]. The 
relationship between generalized displacements and generalized strains can be presented 
by the formula: 𝐮 = 𝐇  𝛆  , (7) 

where the 𝐇  matrix can be determined for each node (𝑥 = 𝑥, 𝑦 = 𝑦, 𝑧 = 𝑧): 

⎣⎢⎢
⎢⎡𝑢𝑢𝑢𝜃𝜃 ⎦⎥⎥

⎥⎤ = ⎣⎢⎢
⎢⎡𝑥 0 𝑦 2⁄ 𝑥𝑧 0 𝑦𝑧 2⁄ 𝑧 2⁄ 00 𝑦 𝑥 2⁄ 0 𝑦𝑧 𝑥𝑧 2⁄ 0 𝑧 2⁄0 0 0 − 𝑥 2⁄ − 𝑦 2⁄ − 𝑥𝑦 2⁄ 𝑥 2⁄ 𝑦 2⁄0 0 0 0 −𝑦 − 𝑥 2⁄ 0 00 0 0 𝑥 0 𝑦 2⁄ 0 0 ⎦⎥⎥

⎥⎤
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝜀𝜀𝛾𝜅𝜅𝜅𝛾𝛾 ⎦⎥⎥

⎥⎥⎥
⎥⎤  . (8) 

Using the definition of elastic strain energy for a discrete model: 
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𝐸 = 12 𝐮  𝐊 𝐮 = 12 𝛆  𝐇  𝐊 𝐇  𝛆  (9) 

and analyzing a finite element model as subjected to basic types of loads (i.e., bending, 
tension and transverse shear), the elastic internal energy can be represented as: 𝐸 = 12 𝛜  𝐇  𝛆 𝑎𝑟𝑒𝑎  . (10) 

The stiffness matrix for the homogenized composite can be determined from: 𝐇 = 𝐇  𝐊 𝐇𝑎𝑟𝑒𝑎  . (11) 

The 𝐇  matrix consists of the stiffness matrices: 

𝐇 = 𝐀 × 𝐁 × 𝟎𝐁 × 𝐃 × 𝟎𝟎 𝟎 𝐑 ×  , (12) 

where the 𝐀 subarray contains tensile and shear stiffnesses, the 𝐁 represents tension-
bending coupling stiffnesses, the 𝐃 contains bending and torsional stiffnesses, and in the 𝐑 subarray the transverse shear stiffnesses are gathered. 

In the case of symmetrical cross sections, the 𝐁 matrix is the zero matrix. For asym-
metrical RVE, non-zero matrix elements appear in the 𝐁 matrix, which affects the 𝐃 ma-
trix values. This problem can be solved by minimizing the 𝐁 matrix by choosing the po-
sition of the neutral axis, or, alternatively, the following formula can be used: 𝐃 = 𝐃 − 𝐁𝐀 𝐁 , (13) 

where the 𝐃′ matrix contains coupled bending and torsional stiffnesses for the non-zero 𝐁 matrix. 

2.3. Numerical Model with Imperfections 
The main goal of this work was to implement geometric imperfections into the nu-

merical model and to determine their influence on the stiffness reduction of corrugated 
board. Cardboard with a B flute (see Table 2) and material parameters contained in Table 
1 were analyzed. 

Table 2. Geometric parameters of waves. 

Wave (Flute) Wave Length (mm) Height (mm) Take-Up Factor (-) 
B 6.5 2.46 1.32 

The application of imperfections in the numerical model of corrugated board consists 
in the appropriate definition of the buckling mode of the RVE. In the layers subjected to 
compression, the influence of imperfections is crucial. Therefore, due to the nature of the 
load, two cases should be considered: compression and bending. During compression, the 
entire cross section of the RVE is compressed, i.e., both the bottom and top liners. With 
regard to bending, one liner is compressed (assumed to be the bottom liner) and the other 
is tensioned. In the case of the liner, which is stretched, the imperfection does not affect 
the load capacity (in other words, it is not present); therefore, the tensile layers can be 
modeled as undeformed. During compression and bending, all or part of the middle card-
board layer is compressed. However, it was assumed that the influence of imperfections 
in this layer on stiffness is negligible due to the already existing corrugated shape of flut-
ing. 

The load direction of the corrugated board also affects the mode of buckling. During 
compression or bending in the machine direction, imperfections in the compressed layers 
are in the form of a half-sine wave across the entire depth of the RVE, where the support 
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is the connection between liners and fluting (see Figure 4a,b). On the other hand, if the 
cardboard is loaded in the cross direction, then a half-wave appears in both directions, 
which causes dome-shaped imperfections. In this case, the support was provided by the 
external edges of the liners in the cross direction and the connection of the liners with 
fluting (see Figure 4c,d). Corrugated board may also contain imperfections that reflect in-
plane shear and twisting of the RVE. For this reason, it was necessary to simulate these 
two load cases (see Figure 4e,f). 

Based on the above description, six modes of imperfection were analyzed, and thus 
six numerical models, which are presented in Figure 4. In each case, the amount of imper-
fections, i.e., the maximum deviation from the ideal shape (red color), was 5% of the card-
board height, which was 0.123 mm. For finite element method computation, the four-node 
quadrilaterals shell elements with reduced integration (S4R elements) were used. In all 
seven numerical models (one model without imperfections and six models with imper-
fections), the same mesh size was assumed. The approximate global size of the element 
was 0.1625 mm, which gave 4920 nodes, 4800 elements and 29,520 degrees of freedom. 

(a) (b) (c) 

  
(d) (e) (f) 

Figure 4. Imperfection modes in the case of: (a) compression in the MD, (b) bending in the MD, (c) 
compression in the CD, (d) bending in the CD, (e) in-plane shear and (f) twisting. 

3. Results 
The corrugated cardboard model without initial imperfections and six models with 

six buckling modes were analyzed. Table 3 shows an example of the 𝐇  matrix computed 
for the RVE without imperfections (see Equation (12)). 

Table 3. Constitutive stiffness matrix 𝐇  for the cardboard model without imperfections. 

  
A (N/mm) 

& B (N) 
B (N) 

& D (𝐍 ⋅ 𝐦𝐦) 
R (𝐍/𝐦𝐦) 

  1 2 3 1 2 3 4 5 

A (N/mm) 
& B (N) 

1 2234 401 0 −18 −5 0   
2 401 1684 0 −5 −2 0   
3 0 0 687 0 0 0   

B (N) & 
D (N ⋅ mm) 

1 −18 −5 0 3291 574 0   
2 −5 −2 0 574 2047 0   
3 0 0 0 0 0 865   

R 
(N/mm) 

4       104 0 
5       0 95 
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Tables 4 and 5 show the stiffness matrices for imperfection modes in the case of com-
pression and bending in the machine direction. Tables 6 and 7 present the RVE stiffness 
matrices with imperfections in the case of compression and bending in the cross direction. 
In Tables 8 and 9, the constitutive stiffness matrices for imperfections in the case of in-
plane shear and twisting are compiled. 

Table 4. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
compression in the MD. 

  A (N/mm) 
& B (N) 

B (N) 
& D (N ⋅ mm) 

R (N/mm) 
  1 2 3 1 2 3 4 5 

A 
(N/mm) 
& B (N) 

1 2144 386 0 140 22 0   
2 386 1683 0 22 43 0   
3 0 0 686 0 0 20   

B (N) & 
D (N ⋅mm) 

1 140 22 0 2975 520 0   
2 22 43 0 520 1949 0   
3 0 0 20 0 0 818   

R 
(N/mm) 

4       105 0 
5       0 95 

Table 5. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
bending in the MD. 

  
A (N/mm) 

& B (N) 
B (N) 

& D (N ⋅ mm) 
R (N/mm) 

  1 2 3 1 2 3 4 5 
A 

(N/mm) 
& B (N) 

1 2156 388 0 154 25 0   
2 388 1682 0 24 43 0   
3 0 0 686 0 0 20   

B (N) & 
D (N ⋅mm) 

1 154 24 0 2990 522 0   
2 25 43 0 522 1945 0   
3 0 0 20 0 0 817   

R 
(N/mm) 

4       105 0 
5       0 95 

Table 6. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
compression in the CD. 

  A (N/mm) 
& B (N) 

B (N) 
& D (N ⋅ mm) 

R (N/mm) 
  1 2 3 1 2 3 4 5 

A 
(N/mm) 
& B (N) 

1 2140 349 0 101 41 0   
2 349 1653 0 41 51 0   
3 0 0 684 0 0 15   

B (N) & 
D (N ⋅mm) 

1 101 41 0 3018 478 0   
2 41 51 0 478 1933 0   
3 0 0 15 0 0 826   

R 
(N/mm) 

4       105 0 
5       0 95 
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Table 7. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
bending in the CD. 

  A (N/mm) 
& B (N) 

B (N) 
& D (N ⋅ mm) 

R (N/mm) 
  1 2 3 1 2 3 4 5 

A 
(N/mm) 
& B (N) 

1 2161 359 0 127 54 0   
2 359 1659 0 53 58 0   
3 0 0 685 0 0 16   

B (N) & 
D (N ⋅mm) 

1 127 53 0 3048 493 0   
2 54 58 0 493 1940 0   
3 0 0 16 0 0 828   

R 
(N/mm) 

4       104 0 
5       0 95 

Table 8. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
in-plane shear. 

  
A (N/mm) 

& B (N) 
B (N) 

& D (N ⋅ mm) 
R (N/mm) 

  1 2 3 1 2 3 4 5 
A 

(N/mm) 
& B (N) 

1 2233 401 1 28 7 −1   
2 401 1684 0 8 7 0   
3 1 0 686 −1 0 2   

B (N) & 
D (N ⋅mm) 

1 28 8 −1 3289 574 1   
2 7 7 0 574 2049 0   
3 −1 0 2 1 0 865   

R 
(N/mm) 

4       105 0 
5       0 95 

Table 9. Constitutive stiffness matrix 𝐇  for the cardboard model with imperfections in the case of 
twisting. 

  A (N/mm) 
& B (N) 

B (N) 
& D (N ⋅ mm) 

R (N/mm) 
  1 2 3 1 2 3 4 5 

A 
(N/mm) 
& B (N) 

1 2204 372 4 −35 −33 4   
2 372 1652 3 −32 −46 3   
3 4 3 685 4 3 −6   

B (N) & 
D (N ⋅mm) 

1 −35 −32 4 3209 524 5   
2 −33 −46 3 524 1982 4   
3 4 3 −6 5 4 854   

R 
(N/mm) 

4       106 0 
5       0 95 

It should be noted that in the 𝐁 subarrays non-zero components are formed, which 
is caused by the asymmetry of the cross-section of the corrugated cardboard. Table 10 
shows the stiffness values of the main diagonal matrices that are presented in Tables 3–9 
for the model without imperfections (REF) and the six models with buckling modes (M1–
M6). The imperfection modes were marked in the order presented in Figure 4, i.e., M1—
compression in the MD, M2—bending in the MD, M3—compression in the CD, etc. Omit-
ting the components (∗)  does not introduce an error in the analysis of the results, be-
cause these components depend on the components (∗) , (∗)  and on the Poisson’s ra-
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tio. The 𝐁 subarray was also disregarded, but its influence was taken into account by de-
termining the uncoupled 𝐃 matrix from Equation (13). The components of the 𝐑 matrix 
were also omitted because their values remained almost unchanged for each buckling 
mode. Figures 5–10 show the reduction of the individual stiffnesses for the analyzed six 
imperfection modes compared to the reference value that was computed from the model 
without imperfection. Table 11 presents the differences between the stiffnesses for models 
with imperfections and the stiffnesses of the reference model (without imperfections). 

Table 10. Selected stiffnesses for models without imperfections and with six imperfection modes. 

 REF M1 M2 M3 M4 M5 M6 𝐴  (N/mm) 2234 2144 2156 2140 2161 2233 2204 𝐴  (N/mm) 1684 1683 1682 1653 1659 1684 1652 𝐴  (N/mm) 687 686 686 684 685 686 685 𝐷  (N ⋅ mm) 3290 2966 2979 3013 3040 3289 3208 𝐷  (N ⋅ mm) 2047 1948 1944 1931 1937 2049 1980 𝐷  (N ⋅ mm) 865 817 816 826 827 865 854 

 
Figure 5. 𝐴  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 

 
Figure 6. 𝐴  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 
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Figure 7. 𝐴  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 

 
Figure 8. 𝐷  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 

 
Figure 9. 𝐷  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 
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Figure 10. 𝐷  stiffnesses for the six buckling modes (blue color) compared to the reference value 
(red color). 

Table 11. Stiffness degradation for models with imperfections (%). 

 M1 M2 M3 M4 M5 M6 𝐴  −4.0 −3.5 −4.2 −3.3 −0.06 −1.4 𝐴  −0.1 −0.1 −1.8 −1.5 −0.01 −1.9 𝐴  −0.1 0.0 −0.5 −0.2 −0.03 −0.2 𝐷  −9.9 −9.5 −8.4 −7.6 −0.05 −2.5 𝐷  −4.8 −5.1 −5.7 −5.4 0.07 −3.3 𝐷  −5.5 −5.6 −4.5 −4.4 0.00 −1.3 

4. Discussion 
On the basis of the analyzed six buckling modes, reduced stiffness of the corrugated 

board was obtained due to the consideration of geometric imperfections (see Tables 3–10). 
In Table 12, the final stiffnesses of the corrugated cardboard with imperfections are 
shown. The individual stiffness matrix components were selected from the corresponding 
imperfection modes as follows: 𝐴 —compression in the MD, 𝐴 —compression in the 
CD, 𝐴 —in-plane shear, 𝐷 —bending in the MD, 𝐷 —bending in the CD, 𝐷 —twist-
ing. 

Table 12. Final stiffnesses of corrugated board with imperfections. 

 Reference 
Stiffnesses 

Final 
Stiffnesses 

Stiffness 
Reduction (%) 𝐴  (N/mm) 2234 2144 −4.0 𝐴  (N/mm) 1684 1653 −1.8 𝐴  (N/mm) 687 686 −0.03 𝐷  (N ⋅ mm) 3290 2979 −9.5 𝐷  (N ⋅ mm) 2047 1937 −5.4 𝐷  (N ⋅ mm) 865 854 −1.3 

The data presented in Tables 10–11 and Figures 5–10 show that the stiffness 𝐴  did 
not change significantly for all analyzed buckling modes. The maximum decrease in the 
stiffness 𝐴  was 0.5%. The presented data, in particular the data summarized in Table 
11, clearly show that taking into account the imperfection mode M5 causes negligible re-
duction of all stiffnesses. It can also be noticed that the greatest differences in stiffness 
(due to taking imperfections into account) occur for the stiffness 𝐷 , and a slightly 
smaller reduction occurs for the stiffness 𝐷  (see Table 12). The obtained values show 
that the bending stiffnesses are the most sensitive to disturbances in the ideal shape of the 
corrugated cardboard. 
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In order to save computational time, it was possible to analyze only one buckling 
mode instead of all six. Therefore, it was necessary to choose the buckling mode that gives 
the most similar results to those determined from the six imperfection cases. To determine 
this mode, the final stiffnesses from Table 12 were compared with the stiffness values for 
each buckling mode from Table 10. The smallest total error was obtained for the buckling 
mode M3, i.e., the compression in the CD, and it amounted to 5.3%. Slightly worse results 
were obtained for the modes M4—6.5%, M1 and M2—7.1%, and M6—12.9%. The worst 
fit was obtained for the in-plane shear case (mode M5). For this imperfection mode, the 
total error was as high as 23.5%. Based on the above results, it can be concluded that the 
most reliable results are obtained by analyzing the imperfections in the case of compres-
sion in the CD (see Figure 4c). This means that by using the imperfection geometry from 
the M5 model, it was possible to obtain drops in the values of the main stiffnesses, which 
correspond to the drops of the same stiffnesses but while using models with dedicated 
imperfections. 

5. Conclusions 
Nowadays, great emphasis is placed on the most optimal use of natural resources, 

including the production of corrugated cardboard. For this purpose, many research 
groups are trying to understand the behavior of cardboard depending on various factors 
in order to correctly model it. Taking the imperfections into account in the process of de-
termining the equivalent stiffnesses is crucial because the geometrical deformations of the 
individual paper layers in the corrugated board are always present and cannot be ignored. 
The article presents an approach to taking into account such geometric imperfections in 
the modeling of corrugated board. The homogenization method, consisting in simplifying 
the full 3D model of the corrugated board to a single layer with equivalent parameters, 
was used. The numerical homogenization process was based on the elastic strain energy 
equivalence between the representative volume element and the equivalent plate. Taking 
into account geometric imperfections in the homogenization process is not obvious. The 
material may have initial imperfections of various shapes or imperfections, which are 
shaped by the loading conditions. Therefore, finding a universal geometry that reflects 
possible imperfections is very important for the correct determination of the effective pa-
rameters of a homogenized plate with a periodic core. On the basis of the conducted anal-
yses, several conclusions were formulated regarding the influence of imperfections on the 
stiffness of the corrugated board, which enable a better understanding of the behavior of 
the corrugated board and thus more conscious design of the packaging structure made of 
this material. 
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