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Abstract: Sandwich structures are widely used in construction, as well as in the aviation, spaceship, 
and electronics industries. The interesting result, among others, is the fact that individual layers can 
be freely selected to meet the planned requirements. In the case of sandwich structures in construc-
tion, they must meet the requirements of load-bearing capacity, thermal, and acoustic insulation, 
and additionally, they must be resistant to biological and chemical corrosion. The paper presents 
calculation algorithms for Hoff’s three-layer panels. In the first case, the well-known and proven 
method of finite differences in variation terms was used, assuming actual geometrical and material 
parameters. In the second case, the numerical homogenization method of the layered panel was 
used, replacing the stiffnesses of individual layers with a homogeneous equivalent plate with sub-
stitute stiffness corrected in shearing by an analytically derived shear correction factor. A compar-
ative analysis of the results of the calculations with the use of both approaches was carried out. A 
good agreement between the displacement values and the calculated cross-sectional forces was ob-
tained. On this basis, it can be assumed that the static analysis of a slab by simplified methods using 
numerical homogenization with an analytical shear correction factor is appropriate and can be ap-
plied to layer structures. 

Keywords: sandwich panel; finite difference method; numerical homogenization; finite element 
analysis 
 

1. Introduction 
Sandwich panels are widely used in construction due to the possibility of a deliberate 

selection of the properties of individual layers. In the initial period, the sandwich panel 
theory was mainly developed for applications in the aviation, space, and electronics and 
medicine industries [1–3]. Sandwich panels used in the construction industry must carry 
high utility loads, provide good thermal and acoustic insulation, and be resistant to bio-
logical and chemical corrosion. The standard sandwich construction has two homogene-
ous top layers and a soft homogeneous core in between. However, such a structure is 
characterized by a large heterogeneity of material and geometric properties between the 
outer layers and the core [4]. The top layers of the plate are composed of steel or concrete 
in order to ensure adequate strength of the element. On the other hand, the core is usually 
composed of a material with poor strength parameters, e.g., mineral wool, foam, and pol-
yurethane. Its function is only to provide adequate thermal insulation. For this reason, 
often in the contact plane of the component layers, it is difficult to define stresses caused 
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by thermal and mechanical loads [5–7]. The introduction of non-homogeneous materials, 
such as functionally graded materials (FGM), made layered structures even more attrac-
tive [8,9], and they are used, for example, in the construction of submarines or space 
landers. The use of FGM materials reduces the inter-layer stresses and thermal stresses, 
improving the mechanical properties of sandwich structures [10,11]. 

The literature contains a number of works on the statics of sandwich panels subjected 
to mechanical [12–18] and thermal [19–24] loads, as well as on various types of constituent 
materials [1,25]. The materials used for sandwich construction have a decisive influence 
on their statistical performance. By increasing the deformation modulus of the core mate-
rial, its share of the work of the entire sandwich structure is significantly increased. The 
most advantageous solution was the experimental validation of the model used to carry 
out numerical tests [19,26–29]. Algorithmizing the calculation of sandwich panels as-
sumes their actual geometric and material data would be a very sought-after solution in 
the design and creation of new types of structures in this category. 

Taking into account the possible construction materials for both the outer and middle 
layers, it was found that the most appropriate model reflecting the work of a sandwich 
panel would be the model of a three-dimensional panel given by Hoff [30]. For the model 
adopted in the work, equilibrium equations were given in the form of a system of three 
partial differential equations derived by Hoff [30] or the equivalent of one eight-order 
differential equation given in [31,32]. This can be effectively computed by the finite differ-
ence method (FDM). As an alternative to the FDM approach, the well-established Finite 
Element Method (FEM) can be used, however, for sandwich panels with a large difference 
in stiffness between the outer layers and the core, the full 3D model should be used for 
the calculation. Another approach, which is extremely effective, especially when it is not 
necessary to fully model the layered structures, is numerical homogenization [33]. 

Performing deformation analysis of sandwich panels in an analytical manner results 
in a large number of complicated equations to be solved, which is associated with being a 
time-consuming calculation and a high possibility of making a mistake. Additionally, 3D 
modeling of such plate cross-sections is not very economical. Therefore, the possible so-
lution may be to use the available homogenization methods. Thanks to which, the com-
plex cross-section of a multi-layer panel can be reduced to a single-layer substitute model 
with equivalent parameters. This approach ensures that the behavior of the equivalent 
model is very similar to that of the three-dimensional reference model. The issue of the 
homogenization of complex cross-sections has been the subject of numerous studies in 
recent years. One can distinguish, inter alia, the methods of periodical homogenization 
[34], asymptotic homogenization [35], or the method based on inverse analysis [36]. An-
other type of homogenization based on strain energy was proposed in [37]. It is based on 
the use of strain energy, assuming mechanical equivalence between the simplified model 
and the representative volume element (RVE) of a 3D sample. The homogenization 
method based on strain energy equivalency applied to layer structures was proposed by 
Biancolini [38] and then improved by Garbowski and Gajewski [39]. This homogenization 
method was also used to calculate a perforated corrugated board [40] or elements of en-
gineering structures, e.g., prefabricated floor slabs of the “Filigran” type [33] or thin-
walled beams with periodic holes [41]. 

The aim of the work is to present a method for calculating the Hoff three-layer plate 
using the finite difference method using the variational approach and to numerically ho-
mogenize and enhance analytically derived shear correction factors. Both numerical cal-
culations were limited to elastic analysis only, and were performed using both the tradi-
tional method and specialized commercial software. The main idea of this work is to 
show the benefits of using numerical homogenization, especially in cases where the com-
putational model can be greatly simplified. Numerical homogenization, which replaces 
the sandwich structure with a homogeneous plate, is a practical tool for engineering cal-
culations, however, in the case of sandwich structures, it requires correction in terms of 
shear, which is overestimated and should be lowered. In this study, the shear correction 



Appl. Sci. 2022, 12, 9918 3 of 16 
 

factor was determined analytically, which effectively improved the obtained results. In 
order to prove the validity of the simplifications adopted during the homogenization and 
comparative analysis of the values of deflections and internal forces for an exemplary 
sandwich panel was conducted using the finite difference method and the finite element 
method supplemented with numerical homogenization and analytical shear correction 
factors. 

2. Materials and Methods 
2.1. Basic Assumptions 

In the work, the Hoff model was adopted for the detailed solution, the assumptions 
of which are as follows: (1) the plate consists of three layers and is symmetrical in relation 
to the middle plane (Figure 1); (2) the material of the middle layer is non-deformable in 
the vertical direction, and (3) the outer layers fulfill all the assumptions of the theory of 
thin isotropic plates and shields. 

 
Figure 1. Plate of the Hoff model (w - out of plane displacement, u and v – in plane displace-
ments). 

The assumptions of Hoff’s model can be described with three displacements: u(x, y) 
in the middle plane of the lower layer in the x-axis direction, v(x, y) in the middle plane 
of the lower layer in the y-axis direction, and w(x, y) as a vertical deflection of the plate, 
which is the same for all layers. The equilibrium equations, taken from work [32], take the 
form (1)–(3): ቈ𝐷 1 − 𝜈ଶ𝐸𝛿 ∇ଶ∇ଶ − (1 − 𝜈ଶ)𝐺௪(2ℎ + 𝛿)ଶ4𝐸𝛿ℎ ∇ଶ቉ 𝑤 − (1 − 𝜈ଶ)𝐺௪(2ℎ + 𝛿)2𝐸𝛿ℎ ∙ 𝜕𝑢𝜕𝑥− (1 − 𝜈ଶ)𝐺௪(2ℎ + 𝛿)2𝐸𝛿ℎ ∙ 𝜕𝑣𝜕𝑦 = 𝑞 1 − 𝜈ଶ2𝐸𝛿 , (1)

− (1 − 𝜈ଶ)𝐺௪(2ℎ + 𝛿)2𝐸𝛿ℎ ∙ 𝜕𝑤𝜕𝑥 + ቈ 𝜕𝜕𝑥ଶ + 1 − 𝜈2 ∙ 𝜕ଶ𝜕𝑦ଶ − (1 − 𝜈ଶ)𝐺௪𝐸𝛿ℎ ቉ 𝑢 + 1 + 𝜈2 ∙ 𝜕ଶ𝑣𝜕𝑥𝜕𝑦 = 0 (2)

− (1 − 𝜈ଶ)𝐺௪(2ℎ + 𝛿)2𝐸𝛿ℎ ∙ 𝜕𝑤𝜕𝑦 + 1 + 𝜈2 ∙ 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 + ቈ 𝜕𝜕𝑦ଶ + 1 − 𝜈2 ∙ 𝜕ଶ𝜕𝑥ଶ − (1 − 𝜈ଶ)𝐺௪𝐸𝛿ℎ ቉ 𝑣 = 0, (3)

where 𝐸 is the Young’s modulus, 𝜈 is Poisson’s ratio of materials of the outer plates, 𝐺௪ 
is the modulus of shear deformation of the middle layer, 2ℎ is the thickness of the middle 
layer, 𝛿  is the thickness of external layers, 𝑢, 𝑤, 𝑎𝑛𝑑 𝑣 are plate displacements, 𝐷 is the 
plate’s stiffness of the outer layer, which can be computed as follows: 𝐷 =𝐸𝛿ଷ 12(1 − 𝑣ଶ)⁄ . 

2.2. Finite Difference in Variational Form 
The finite difference method was used to solve certain differential equation systems. 

Although it is a less frequently used method, it can be successfully used for static calcula-
tions alongside the finite element method. In the literature, there are a number of funda-
mental works on the method of finite differences [42–56]. The method is used in the cal-
culations of plate structures [19,57,58], tanks [59–62], and surface girders. It has been used 
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and tested many times and gives satisfactory results in the theory of coatings and thin 
plates. 

The discretization of solutions for sandwich panels using the finite difference method 
in terms of variation consists of determining the minimum function of the elastic defor-
mation energy of a bent three-layer panel. This function takes the form of (4) [1]: 

𝑉 = 12 ඵ ൝2𝐷 ൥ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ + 2𝜈 𝜕ଶ𝑤𝜕𝑥ଶ ∙ 𝜕ଶ𝑤𝜕𝑦ଶ + ቆ𝜕ଶ𝑤𝜕𝑦ଶ ቇଶ + 2(1 − 𝜈) ቆ 𝜕ଶ𝑤𝜕𝑥𝜕𝑦ቇଶ൩ 
஺ + 2𝐸𝛿1 − 𝜈ଶ ቈ൬𝜕𝑢𝜕𝑥൰ଶ + 2𝜈 𝜕𝑢𝜕𝑥 ∙ 𝜕𝑣𝜕𝑦 + 1 − 𝜈2 ൬𝜕𝑢𝜕𝑦൰ଶ + (1 − 𝜈) 𝜕𝑢𝜕𝑦 ∙ 𝜕𝑣𝜕𝑥+ 1 − 𝜈2 ൬𝜕𝑣𝜕𝑥൰ଶ + ൬𝜕𝑣𝜕𝑦൰ଶ቉

+ 2ℎ𝐺௪ ቈ𝑢ଶℎଶ + 2 𝑢ℎ ∙ 2ℎ + 𝛿2ℎ ∙ 𝜕𝑤𝜕𝑥 + (2ℎ + 𝛿)ଶ4ℎସ ൬𝜕𝑤𝜕𝑥 ൰ଶ + 𝑣ଶℎଶ + 2 𝑣ℎ∙ 2ℎ + 𝛿2ℎ ∙ 𝜕𝑤𝜕𝑦 + (2ℎ + 𝛿)ଶ4ℎସ ൬𝜕𝑤𝜕𝑦 ൰ଶ቉ൡ 𝑑𝑥𝑑𝑦− ඵ ൫𝑞௭𝑤 + 𝑞௫𝑢 + 𝑞௬𝑣൯𝑑𝑥𝑑𝑦 
஺ . 

(4) 

The derivatives in Equation (4) have been replaced with the appropriate differential 
schemes given e.g., in [7]. Through numerical integration, Function V was obtained as a 
function of several variables (5). 𝑉 = 𝑉(𝑤௜௞, 𝑢௜௞, 𝑣௜௞), (5)

where 𝑤௜௞, 𝑢௜௞, 𝑎𝑛𝑑 𝑣௜௞ are components of the displacement vector in individual nodes of 
the adopted partition grid. 

The necessary condition for the existence of an extreme of functions of several varia-
bles is (6): 𝜕𝑉𝜕𝑤௜௞ = 0, 𝜕𝑉𝜕𝑢௜௞ = 0, 𝜕𝑉𝜕𝑣௜௞ = 0. (6)

The sought displacements in the nodes of the grid are shown in Equation (5) in a 
quadratic form. From the dependence of (6), a symmetrical system of algebraic linear 
equations is obtained in order to determine the displacements, in which the number of 
equations is equal to the number of unknowns. 

The boundary conditions known from the theory of thin plates, such as a free edge, 
freely supported, or fixed, are difficult to transfer to sandwich panels due to ambiguity. 
In work [8], using the calculus of variations, it was shown that there are sixteen homoge-
neous natural boundary conditions for the three-layer Hoff model discussed in this work. 

The advantage of the finite difference method in the variational approach is that in 
the assumed system of unknowns, only the geometric boundary conditions should be met, 
and the static conditions are met naturally by the function itself. To write the second de-
rivative of the deflection function 𝑤(𝑥, 𝑦) in the finite difference method for the boundary 
point, it is necessary to extend beyond the edge by one interval of the partition grid, while 
for the first derivatives of 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) it is not necessary. Analyzing the natural 
boundary conditions for the case of the free edge of a three-layer plate, where all displace-
ments 𝑤, 𝑢, 𝑎𝑛𝑑 𝑣 can occur, calculating the derivative of Function (5) with respect to the 
deflection at the point beyond the edge ൫𝑤௜,௞ ା ଵ൯ Equation (7) was obtained. 0,5𝐷𝑠ଶ൫𝑤௜,௞ିଵ − 2𝑤௜,௞ + 𝑤௜,௞ାଵ൯ = 0. (7)

Assuming Poisson’s ratio 𝜈 = 0, we obtain 𝑚௬ = 0. For the purposes of this study, 
the Poisson’s ratio was adopted 𝜈 = 0 in order to provide a more general and material-
independent solution. Then, by calculating the derivative of Function (5) with respect to 
the displacements 𝑤௜௞, 𝑢௜௞, 𝑎𝑛𝑑 𝑣௜௞, Equation (8)–(10) were obtained: 
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−2𝐷𝑠 ቆ𝜕ଷ𝑤𝜕𝑦ଷ + 2 𝜕ଷ𝑤𝜕𝑥ଶ𝜕𝑦ቇ + 𝑠 ቈ𝐺௪(2ℎ + 𝛿)ℎ 𝑣 + 𝐺௪(2ℎ + 𝛿)ଶ2ℎ ∙ 𝜕𝑤𝜕𝑦 ቉+ 𝑠ଶ ቆ𝐷 𝜕ସ𝑤𝜕𝑥ସ − 0,5𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑢𝜕𝑥 − 0,5𝑞ቇ = 0, (8)

𝐸𝛿𝑠 ൬𝜕𝑣𝜕𝑥 + 𝜕𝑢𝜕𝑦൰ + 0,5𝑠ଶ ቈ𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑤𝜕𝑥 − 2𝐸𝛿 𝜕ଶ𝑢𝜕𝑥ଶ + 2𝐺௪ℎ 𝑢቉ = 0, (9)

2𝐷𝛿𝑠 𝜕𝑣𝜕𝑦 − 𝑠ଶ[0,5𝐸𝛿 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 + 0,5𝐸𝛿 𝜕ଶ𝑣𝜕𝑥ଶ − 𝐺௪ℎ 𝑣 − 0,5𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑤𝜕𝑦 = 0. (10)

Assuming the relationship between displacements and cross-sectional forces, Equa-
tion (11)–(13) were obtained after minor transformations. 2𝑞௬ + 𝑁௬௭ + 𝑠 ቈ𝐷 𝜕ସ𝑤𝜕𝑥ସ − 0,5𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑢𝜕𝑥 − 0,5𝑞቉ = 0, (11)

𝑁௫௬ + 0,25𝑠 ቈ𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑤𝜕𝑥 − 2𝐸𝛿 𝜕ଶ𝑢𝜕𝑥ଶ + 2𝐺௪ℎ 𝑢቉ = 0, (12)

𝑁௬ − 0,125𝑠 ቈ2𝐸𝛿 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 + 2𝐸𝛿 𝜕ଶ𝑣𝜕𝑥ଶ − 4𝐺௪ℎ 𝑣 − 2𝐺௪(2ℎ + 𝛿)ℎ ∙ 𝜕𝑤𝜕𝑦 ቉ = 0. (13)

Taking into account Equation (1)–(3) and the dependence 2𝑞௬ + 𝑁௬௭ = 𝑄௬, Equation 
(11)–(13) can be given in the form (14)–(16). 𝑄௬ + 𝐺௪(2ℎ + 𝛿)2ℎ 𝑠 ቈ2ℎ + 𝛿2 ∙ 𝜕ଶ𝑤𝜕𝑥ଶ + 𝜕𝑣𝜕𝑦቉ = 0, (14)

𝑁௫௬ + 0,25𝑠 ቈ𝜕ଶ𝑢𝜕𝑦ଶ + 𝜕ଶ𝑣𝜕𝑥𝜕𝑦቉ = 0, (15)

𝑁௬ + 0,25𝐸𝛿𝑠 𝜕ଶ𝑢𝜕𝑥𝜕𝑦 = 0. (16)

If the order of magnitude s is omitted from Equation (14)–(16), these equations pass 
into typical boundary conditions, which can be represented by the dependencies of the 
assumed free edge (17) [1]. 𝑚௬ = 0,  𝑄௬ = 0, 𝑁௬ = 0,   𝑁௫௬ = 0 (17)

2.3. Numerical Homogenization 
The second part of the calculation was performed based on the principles of numer-

ical homogenization. Based on the energy equivalence between the simplified shell model 
and the full three-dimensional, the finite element model can be represented by an appro-
priate definition of displacements at the outer RVE nodes for both membrane and bending 
behavior. The generalized displacements at each node on the RVE surface are related to 
the generalized strains. Therefore, the relationship between the generalized constant 
strains and the position of the external nodes on the RVE boundary is expressed by the 
following transformation: 𝐮𝒊 = 𝐀𝒊 𝛜𝒊, (18)

where 𝐮 is the node displacement vector, and 𝜖 is the strain vector. Here, for a single 
node (𝑥௜ = 𝑥 , 𝑦௜ = 𝑦 , and 𝑧௜ = 𝑧) one can derive the 𝐀௜  matrix adopted for the RVE 
model. 
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൥𝑢௫𝑢௬𝑢௭ ൩௜ = ቎𝑥 0 𝑦 2⁄ 𝑧 2⁄ 0 𝑥𝑧 0 𝑦𝑧 2⁄0 𝑦 𝑥 2⁄ 0 𝑧 2⁄ 0 𝑦𝑧 𝑥𝑧 2⁄0 0 0 𝑥 2⁄ 𝑦 2⁄ − 𝑥ଶ 2⁄ − 𝑦ଶ 2⁄ − 𝑥𝑦 2⁄ ቏௜ ⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝜀௫𝜀௬𝛾௫௬𝛾௫௭𝛾௬௭𝜅௫𝜅௬𝜅௫௬⎦⎥⎥

⎥⎥⎥
⎥⎤

௜
(19)

Matrix 𝐀௜ determines the relationship between the displacements and effective de-
formations that are applied to nodes in boundary conditions to which the stiffness of the 
entire model is condensed. The total energy of elastic deformation is: 𝐸 = 12 𝐮௘்  𝐊 𝐮௘ = 12 𝛜௘்  𝐀௘் 𝐊 𝐀௘ 𝛜௘, (20)

where 𝐊 is the global stiffness matrix. Taking into account that the finite element model 
is subjected to bending, tension, and transverse shear for the shell (or plate). The internal 
energy is: 𝐸 = 12 𝛜௘்  𝐀୩ 𝛜௘{𝑎𝑟𝑒𝑎} (21)

The stiffness matrix of a homogenized composite is easy to extract from a discrete matrix 
because: 𝐀௞ = 𝐀௘் 𝐊 𝐀௘𝑎𝑟𝑒𝑎 . (22)

The matrix 𝐀௞is the ABDR matrix which can be saved as: 

𝐀௞ = ൥𝐀ଷ × ଷ 𝐁𝟑 × 𝟑 0𝐁ଷ × ଷ 𝐃ଷ × ଷ 00 0 𝐑ଶ × ଶ൩. (23)

where 𝐀 contains the tensile and shear stiffnesses, 𝐁 contains the combination of tension 
and bending stiffness, 𝐃 contains the bending and torsional stiffness, and 𝐑 contains the 
transverse shear stiffness. 

3. Results
The calculations of the detailed sandwich panel were taken from [63]. The following 

data was adopted for the calculations: 𝑙௫ = 300 cm , 𝑙௬ = 180 cm ,  𝛿 = 5 cm, 2ℎ =8 cm, 𝐸 = 2.6 ∙ 10ସ  MN mଶ⁄ , 𝐺௪ = 3 MN mଶ⁄ . The load was assumed as evenly distributed 
with a value of 𝑞 = 10 kN mଶ⁄ . For a better image, the above parameters are shown in 
Tables 1 and 2. Figure 2 shows the markings, the adopted partition grid, and the boundary 
conditions for the analyzed slab. 

Table 1. Geometric dimensions of the sandwich panel and applied external loads. 𝒍𝒙 
(𝐜𝐦) 

𝒍𝒚 
(𝐜𝐦) 

𝜹 
(𝐜𝐦) 

𝟐𝒉 
(𝐜𝐦) 

𝒒 (𝐤𝐍 𝐦𝟐⁄ ) 
300 180 5 8 10

Table 2. Material parameters of the external layers and middle core. 𝑬 (𝐌𝐍 𝐦𝟐⁄ ) 
𝑮𝒘 (𝐌𝐍 𝐦𝟐⁄ ) 

𝒗 
(−) 

External layers 2.6 × 10ସ 4.33 × 10ଷ 0.2 
Middle core 6 3 0 
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Figure 2. Sandwich panel taken for calculation. 

Using the described method of finite differences (Equation (4)–(6)), a global matrix 
was built to determine the displacements. A rectangular slab, simply supported on two 
opposite edges and two free edges, with a cut in one of the free edges, was taken as an 
example of a slab. Earlier, the paper described the boundary conditions for the free edge 
(Equation (7)–(17)) adopted for the calculations. After using the symmetry of the plate, a 
system of equations with 110 unknowns was obtained to solve. 

In order to calculate the reference deflections, several three-dimensional models of 
the sandwich panel were created, defining the cross-section and material properties in 
different ways. Commercial FE software (ABAQUS FEA) was used for calculations. The 
results obtained from the 3D model were compared with the results obtained in an ana-
lytical manner and with the method of numerical homogenization. A multi-layer slab with 
the dimensions shown in Figure 2 was modeled as a freely supported slab. The slab con-
sisted of concrete external cladding and a foam core. The material parameters were 
adopted as in the analytical approach. Boundary conditions in both 3D numerical models 
of a simply supported type were applied at two opposite shorter sides. The slab was 
loaded with a load evenly distributed over the entire surface of the slab, with a value of 10 kN mଶ⁄  (the same as the plate shown in Figure 2).  

The first model (Model 1) is a full 3D model of the plate. Its height was modeled as 
18 cm and then divided into 3 parts with appropriate layer heights, i.e., 5 cm, 8 cm, and 5 
cm, using partition cells. The model discretized 3D solid elements of C3D20R (20-node 
brick elements with three degrees of freedom in each node with a reduced integration 
scheme) with dimensions of 300 mm in the plane and seven elements in thickness. The 
second model (Model 2) was created from a combination of 3D solids and skins. The con-
crete surface layers were modeled as skin and the foam core as a 3D solid structure. The 
core was divided into solid C3D20R elements, and skins into shell elements S4R (4-node 
general shell with reduced integration) with dimensions of 300 mm in the plane.  

The third model (called Model 3) was created analogously to Model 1. The only dif-
ference was the discretization of the model; elements of the CSS8 (continuum solid shell 
elements) type were used here. Another model of the plate (Model 4) was modeled as a 
shell element with external dimensions as given earlier. The material properties were as-
signed using a composite section, and the plate was meshed with S8R elements (8-node 
shell elements with reduced integration scheme). 

In order to perform numerical homogenization, it was necessary to correctly define 
the stiffness matrix of a representative volume element (RVE). This RVE model was cre-
ated by extracting a portion of a structure from the entire 3D model. RVE was modeled as 
a solid 3D construction composed of two materials with dimensions of 20 × 20 × 18 cm. 
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The outer layers were composed of concrete, while the core was composed of foam (Figure 
3a). The whole was meshed with solid C3D20R elements (Figure 3b). 

(a) (b) 

Figure 3. RVE—(a) 3D model; (b) mesh. 

Figure 4 shows the top view of the plate along with the mean value of displacements 
determined by the finite difference method. The maximum value of displacements in this 
model is 9.82 mm. 

Figure 4. Mean displacements of the analytical model. 

Figure 5 shows the mean displacements of the numerical full 3D model of the Hoff 
panel. The maximum deflection equals 10.18 mm. 

Figure 5. Mean displacements of Model 1 (numerical full 3D model). 

On the other hand, the simplified, single-layer model of the Hoff plates is relatively 
easy to build. Most of the work is required to obtain the stiffness matrix of such an ele-
ment. However, this is only performed once and for all. In the case of elements consisting 
of several materials with very different material properties (Young’s modulus and Pois-
son’s ratio), the shear strength has a large impact on the deflection value. For this reason, 
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the simplified models use the orthotropic model of composite, assuming that calculated 
values of 𝐺ଵଷ and 𝐺ଶଷ are enhanced by the shear correction factor 𝑘௭, which can be com-
puted using the following formulas (24)–(39):  

𝑘௭ = 𝑄ଶ𝐺෠ ቈන 𝜏(𝑧)ଶ𝐺(𝑧) 𝑑𝑧ு ቉ିଵ, (24)

where 𝑄 is a shear force: 𝑄 = න 𝜏(𝑧)𝑑𝑧ு = 𝐺෠ 𝛾, (25)

𝐺෠
𝛾 is the shear strain and 𝐺෠ being the shear stiffness integrated through the plate 
thickness: 

= න  𝐺(𝑧)𝑑𝑧,                                                        (26)ு𝜏 being the shear stress: 𝜏(𝑧) = − 𝑄𝐷෡ 𝐹(𝑧), (27)

where 𝐷෡ is defined as: 𝐷෡ = 𝐴𝐷 − 𝐵 ଶ. (28)

In Equation (28), the tensile-compressive stiffness (𝐴), flexural stiffness (𝐷), and the 
coupling stiffness (𝐵) can be extracted from the matrix 𝐀௞. In case of isotropic layered 
plates 𝐴 = 𝐴ଵଵ = 𝐴ଶଶ, 𝐵 = 𝐵ଵଵ = 𝐵ଶଶ, 𝐷 = 𝐷ଵଵ = 𝐷ଶଶ  (see Equation (23)). All stiffnesses 
can be also computed using the CLPT theory, so the tensile-compressive stiffness reads: 

𝐴 = න 𝐸(𝑧) 𝑑𝑧ு = ෍(𝑧௜ାଵ − 𝑧௜)𝐸௜ெ
௜ୀଵ , (29)

while coupling stiffness takes a form: 

𝐵 = − න 𝐸(𝑧)𝑧 𝑑𝑧ு = 12 ෍(𝑧௜ାଵଶ − 𝑧௜ଶ)𝐸௜ெ
௜ୀଵ , (30)

and the flexural stiffness is: 

𝐷 = න 𝐸(𝑧)𝑧ଶ 𝑑𝑧ு = 13 ෍(𝑧௜ାଵଷ − 𝑧௜ଷ)𝐸௜ெ
௜ୀଵ ; (31)

where 𝐸௜ is the Young’s modulus of the i-th layer, while 𝑧௜ and 𝑧௜ାଵ are distances from 
the neutral plane to i-th layer (see Figure 6). 

Figure 6. A diagram of the displacements in the middle of the plate span. 
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In the Equation (27) the function 𝐹(𝑧) has a form: 𝐹(𝑧) = 𝐴𝑆(𝑧) + 𝐵𝑃(𝑧), (32)

where 𝑆(𝑧) = න 𝑧 𝐸(𝑧) 𝑑𝑧௭
(௛ାఋ)ష , (33)

and 𝑃(𝑧) = න 𝐸(𝑧) 𝑑𝑧.௭
(௛ାఋ)ష  (34)

In both the above equations ℎି is the bottommost fiber location (see Figure 6). For 
the layered plates, Equations (33) and (34) can be separated into two cases: (a) when the 
integral is defined in the bottommost layer. The function 𝑆(𝑧) reads: 𝑆ଵ(𝑧) = (𝑧ଶ − (ℎ + 𝛿)ଶି ) 12 𝐸ଵ (35)

while the function 𝑃(𝑧) takes the form: 𝑃ଵ(𝑧) = (𝑧 − (ℎ + 𝛿)ି)𝐸ଵ, (36)

and case (b), when integrals are defined in the i-th layer (𝑖 > 1), where 𝑆(𝑥) becomes: 

𝑆௜(𝑧) = 12 ቌ෍(𝑧௞ାଵଶ − 𝑧௞ଶ)𝐸௞ + (𝑧ଶ − 𝑧௜ଶ)𝐸௜௜
௞ୀଵ ቍ. (37)

and 𝑃(𝑥) is: 

𝑃௜(𝑧) = ෍(𝑧௞ାଵ − 𝑧௞)𝐸௞ + (𝑧 − 𝑧௜)𝐸௜௜
௞ୀଵ . (38)

Finally, the shear correction factor for layered concrete plate takes the form: 

𝑘௭ = 𝐷෡ଶ𝐺෠ ቎න ൫𝐴𝑆ଵ(𝑧) + 𝐵𝑃ଵ(𝑧)൯ଶ𝐺ଵ
௭మ௭భ  𝑑𝑧 + ෍ න ൫𝐴𝑆௜(𝑧) + 𝐵𝑃௜(𝑧)൯ଶ𝐺௜

௭೔శభ௭೔௜ୀଶ  𝑑𝑧቏ିଵ, (39)

which in the case of the analyzed example gives the value of 𝑘௭ equals 0.007. It is worth 
noting that this coefficient is completely different from the shear correction coefficient, 
which for a homogeneous rectangular section is 5/6. Another important observation is the 
fact that, in the case of symmetrical homogeneous plates, the neutral axis coincides with 
the geometric axis, and therefore, the coupling stiffness 𝐵 vanishes. 

In the case of Hoff’s plates, the stiffness matrix was obtained from the homogeniza-
tion process and the classical laminated plate theory (CLPT) method. The stiffness matri-
ces (taking into account only the symmetrical part) obtained from the two methods are 
presented in Table 3. 

Table 3. Stiffness matrix for plate. 

Stiffness Homogenization Method CLPT Method 
A11 (10଺ MPa mm) 2.7359 2.7088 
A12 (10଺ MPa mm) 0.5688 0.5417 
A22 (10଺ MPa mm) 2.7359 2.7088 
A33 (10଺ MPa mm) 1.0836 1.0835 
D11 (10ଵ଴ MPa mm) 1.2125 1.2007 
D12 (10ଵ଴ MPa mm) 0.2519 0.2401 
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D22 (10ଵ଴ MPa mm) 1.2125 1.2007 
D33 (10ଵ଴ MPa mm) 0.4803 0.4803 
R44 (10ଷ MPa mm) 1.3203 1.2833 
R55 (10ଷ MPa mm) 1.3203 1.2833 

The maximum deflection values obtained from various numerical models and the 
analytical methods are presented in Table 4. 

Table 4. Maximum displacement of plate. 

Name of Model Value of Displacements (mm) 
Analytical model 9.82 

Model 1 10.18 
Model 2 9.93 
Model 3 9.94 
Model 4 17.43 

Homogenization model 9.71 
CLPT model 9.89 

To better visualize the behavior of the plate, displacement diagrams for each model 
are presented. Figure 7 shows the displacements of the Hoff’s panel cut parallel to its 
length in the middle of the width. 

 
Figure 7. A diagram of the displacements in the middle of the plate span. 

The values given in Table 4 and in Figures 4 and 5 indicate the correctness of the 
adopted numerical methods. The compliance of the obtained results is satisfactory. 

To better illustrate the comparative analysis of the methods, Table 5 shows some val-
ues of the cross-sectional forces determined using the finite difference method and the 
simplified numerical homogenization method. The table presents the bending moment in 
the claddings (mx) and the bending moment for the entire slab cross-section (Mx) at the 
selected points. 

Table 5. Value of selected cross-sectional forces for the slab. 

Grid Point No 
Finite Difference Method in the 

Variational Approach [63] Numerical Homogenization 

mx (Nm/m) Mx (Nm/m) mx (Nm/m) Mx (Nm/m) 
12 3381 19550 3214 18753 
18 3036 14016 2963 13507 
24 2856 12134 2731 11834 
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30 2777 11244 2663 10868 
36 2746 10619 2615 10054 
42 2735 9865 2597 9352 

4. Discussion 
The paper presents several methods for calculating the deformation of a three-layer 

Hoff’s plate. In the first case, the finite difference method in the variational approach was 
used. In the second case, the numerical FE model was used, and in the third case, the 
homogenization method enhanced with an analytically computed shear correction factor 
was used. The correctness of the calculations using the finite difference method has been 
confirmed in numerous computational scientific works, as well as being confirmed by 
model tests.  

Work [19] presents the results of the differential calculations of a slab of variable 
thickness. The obtained results were verified with model tests composed of resin and sub-
jected to thermal loads. The compliance of the results of the calculations and model tests 
confirms the correctness of the determined matrix and systems of equations in accordance 
with the finite difference method. The effect of temperature is often neglected when cal-
culating plate structures, and yet it gives moment values greater than in the case of other 
loads. The bending moments due to the applied thermal load increase in direct proportion 
to the square of the wall thickness.  

Work in [57] concerns the calculation of a floor slab with a static scheme of a slab 
with free edges loaded in bands along the perimeter of the slab, resting on a Winkler elas-
tic foundation. The calculations were performed for two variants, taking into account two 
values of the subsoil stiffness modulus. It was indicated in the paper that taking into ac-
count the influence of the thermal insulation layer composed of spray-applied polyure-
thane foam in the calculations of the slab causes an increase in the substrate compliance 
modulus and deflection, and the bending moments decrease. The obtained results show 
the necessity to calculate the floor as a layered element.  

Paper [59] presents the results of verification of the static calculations of a monolithic 
rectangular tank with walls with a trapezoidal cross-section. Static calculations were per-
formed with the use of a computer program based on the finite element method (FEM) as 
well as the finite difference method (FDM) in terms of energy (taking into account the 
spatial static operation of the tank). The verification of the obtained results was carried 
out on a concrete tank model with the use of a modern measuring tool: a coordinate meas-
uring arm with a contact head. The compliance of the obtained results proves the correct-
ness of the adopted calculation methods, i.e., the finite element method, on the basis of 
which the calculations with Autodesk Robot Structural Analysis Professional were per-
formed, and the finite difference method in terms of energy, with the use of which the 
calculations were carried out traditionally.  

Work [62] concerns the cooperation between the tank walls and the polystyrene fill-
ing treated as a Winkler-type elastic substrate, assuming the Poisson’s ratio of 𝜈 = 0. Tak-
ing into account the cooperation of the walls of the tank with the elastic foundation filling, 
the tank in the calculations reduces the bending moments and, in some cases, changes the 
sign of the bending moments.  

Work [64] presents solutions for a three-dimensional plate strand that shows a high 
agreement in comparison with the values from Tables 3 and 4 for the differential solution, 
assuming specific geometrical and material parameters. It has been shown in [65] that for 
a three-layer plate strip at 𝐺௪ → ∞, plate deflections tend to deflect isotropic plates with 
the stiffness 𝐷௭ corresponding to the stiffness of two plates with a thickness of 𝛿 sepa-
rated by 2ℎ. As the 𝐺௪  modulus increases, the deflections and normal stresses in the 
claddings decrease, while the shear stresses in the core increase [63].  

In [66], a number of numerical solutions for sandwich structures were given, along 
with the results of experimental tests. Among others, examples of sandwich panels with 
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metal cladding are given. The share of the core in carrying the load is very small and can 
be neglected. This is due to the fact that the ratio of the Young’s modulus of the mantle to 
the Young’s modulus of the core reaches several thousand. The relationships given in the 
paper show that the load acting in the plane of the slab will be transferred almost entirely 
by the cladding. The core, on the other hand, transfers the stresses resulting from shear. 
Its role in this case is to keep the linings at a constant mutual distance. Another advantage 
of multi-layer composite structures with respect to homogeneous ones is given by vibra-
tion reduction via damping increase. In particular, the damping behavior of multi-layer 
composites is due to the local dissipation mechanism acting at the interface between any 
two different layers. This problem is discussed in many publications, e.g., [67–69]. 

In the present study, the results obtained from the simplified models by the homog-
enization method and the CLPT method are consistent with the results of the 3D models, 
which were obtained by various methods of plate modeling and the analytical method. 
The application of the orthotropic material model of concrete, where the shear stiffness 
G13 and G23 were reduced 1000 times, had a large impact on the results of deflections for 
the simplified models. This approach was used because in models with different materials 
with differences in several thousand material parameters, the shear capacity has a signif-
icant impact on the deflection. The work additionally shows that the use of the simplest 
shell composite models does not work for models consisting of layers with very different 
material parameters. The value of the obtained deflections significantly differs by approx-
imately 70% compared to the other models. 

5. Conclusions 
The calculation results presented in the paper were obtained using the finite differ-

ence method in the variational approach, assuming the Poisson’s ratio ν = 0 for a sand-
wich, rectangular slab, simply supported on two opposite edges, and two free edges with 
a cut in one of the free edges. Analogous calculations were performed using a simplified 
model with a substitute plate stiffness, transforming the sandwich panel into a homoge-
neous structure. Based on the comparative analysis, it can be concluded that: (a) the 
method of variational approach to finite differences, used in the theory of isotropic plates 
and the theory of shells, is suitable for solving three-layer plates. Compared to the finite 
element method, the systems of equations are smaller. In energy terms, the difference op-
erators have a lower order. This affects the speed of calculations during parametric anal-
ysis and the optimization of calculations; and (b) the performed calculations using FEM 
and homogenized sandwich plate enhanced with an analytically computed shear correc-
tion factor, showed that the results were compatible with FDM. This proves that the use 
of simplified calculation methods not only speeds up the computation but is fully justified 
in terms of accuracy. 
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