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ABSTRACT: Mixed numerical/experimental method is one of the most widely used for solving difficult prac-
tical inverse problems of great industrial significance. Here the mechanical characterization of concrete as one
of the most popular construction material is presented. Through a typical uniaxial test of cubic concrete spec-
imen enhanced by in-plane contactless displacement measurements the full set of material constants in typical
elasto-plastic constitutive models can be estimated. The great benefit of proposed identification technique is
reduction in number of required experimental efforts to just a single test. Such approach provides economical
and robust inverse procedure which can be easily conducted in typical testing laboratory.

1 INTRODUCTION

Estimation of the material parameters belongs to the
category of parameter identification and is very im-
portant from the point of view of industrial applica-
tions. Moreover, for newly designed structures which
intend to work in plastic region, all the experiments
involved in the estimation procedure must take into
account also the identification of inelastic parameters.

There are few works reported in the literature
that deal with the estimation of material properties
through judicious use of the experimentally obtained
structural response and the response of the mathe-
matical model of the structure (see e.g. Zirpoli et al.
2008, Bolzon and Buljak 2011, Garbowski et al.
2011). These methods belong to the more general
class of solution techniques called Mixed Numeri-
cal/Experimental Technique (MNET). Methods be-
longing to this class differ among themselves in the
data that are chosen for comparison and in the method
of updating the design variables. For example in Gar-
bowski et al. (2012) authors dealt with the in-plane
field of deformations generated by nonstandard bi-
axial test of the cruciform-shaped thin foil sample,
where the error functional was the sum of the squared
differences of measured and computed displacements.
The set of interesting examples on synergic combi-
nations of computational methods and experiments
for structural diagnoses can be found in Maier et al.
(2010) or in Maier et al. (2014). However, all of them
used the same numerical technique, i.e., nonlinear op-

timization with constraints, which falls in the category
of classical optimization.

The classical form of minimization problem with
box constraints reads:

arg min
x

{
[UE −UN (x)]T C−1 [UE −UN (x)]

}
, (1)

lb ≤ x ≤ ub

where x is a vector of sought parameters, UE is a vec-
tor of measurable quantities, UN is a vector of com-
puted responses, C is a covariance matrix, lb is a vec-
tor of lower bounds of parameters and ub is a vector
of upper bounds of parameters.

The minimization of nonlinear objective function
subjected to constraints is a challenging task espe-
cially when the function appears to be also noncon-
vex (multimodal). The first-order minimization al-
gorithms usually employed at first attempt belong
to the gradient based class of deterministic opti-
mization method. Among them scaled conjugate gra-
dient, Gauss-Newton or Levenberg-Marquardt algo-
rithm developed in Trust Region or Line Search
framework are the most frequently used (see e.g. No-
cedal & Wright 2006). The main difference between
trust region and line search approach is how the step
length and its direction is computed in the new iter-
ation. One of the main issues of the trust region ap-
proach, which to a large extent determines the success
and the performance of this algorithm, is in deciding
how large the trusted region should be. Allowing it to



be too large can cause the algorithm to face the same
problem as the classical Newton direction line search,
when the model function minimizer is quite distinct
from the minimizer of the actual objective function.
On the other hand using too small region means that
the algorithm will miss the opportunity to take a step
substantial enough to move it much closer to the so-
lution. In contrary using the line search approach the
step length in each iteration has to be adjusted with
a cost of additional function calls, i.e. direct model
evaluation.

The common feature of discussed algorithms (pro-
vided they are implemented in the least square frame-
work) is that there is no need to construct a Hessian
(matrix of second order partial derivatives of objective
function with respect to model parameters) because it
is computed ‘for free’ from Jacobian:

H (x) ' JTJ, (2)

where Jacobian (J) is a first order partial derivative
of residual vector (R = UE −UN (x)) with respect to
vector of parameters x, namely:

J =
∂R
∂x

. (3)

This approximation, however, is valid only if the
residuals are small, meaning we are close to the so-
lution. Therefore some techniques may be required
in order to ensure that the Hessian matrix is semi-
positive defined, see e.g. (Nocedal & Wright 2006).
Regardless of whether Trust Region or Line Search
framework for gradient-based algorithms is used the
main drawback is that they remain local, meaning the
solution strongly depends on starting point.

Another important class of methods frequently em-
ployed for the minimization of nonconvex functions
are global optimization techniques, e.g. Genetic or
Evolutionary Algorithms (Dlugosz and Burczynski
2012), Particle Swarm Algorithm (Burczynski and
Szczepanik 2013) or Simulated Annealing (Wierz-
chon et al. 2010), which do not require the gradi-
ent computations. Without information about gradi-
ent another method of choosing the direction and step
length of new iteration had to be selected. For ex-
ample Genetic Algorithms use an evolution theory,
keeping most suited individuals for next generation,
and cross-overing or mutating remaining individuals
in population. Particle Swarm Algorithm iteratively
improves a candidate position by moving all particles
around in the search-space according to simple math-
ematical formula over the particle’s position and ve-
locity. Each particle’s movement is influenced by its
local best known position and is also guided toward
the best known positions in the search-space, which
are updated when better positions are found by other
particles. This is expected to move the swarm toward
the best solutions. The main drawback of these meth-
ods is that they require hundreds or even thousands

of iterations (direct model computation) which make
them hardly applicable in solving the practical engi-
neering problems.

The technique adopted here for estimating the ma-
terial properties combines a standard uniaxial com-
pression test of cubic concrete specimen, noncontact-
ing method of displacement field measurements and
nonlinear least square approach for discrepancy func-
tion minimization. In the following section the main
ideas of proposed method will be briefly described,
details concerning inverse procedure and experimen-
tal set up are presented in the previous work of Gajew-
ski & Garbowski (2014).

The main aim of this work is to extend the ap-
plicability of our previously proposed identification
methodology to a wider family of constitutive models
of concrete. Here, the Drucker-Prager model with its
various modifications, commonly used in many prac-
tical applications, is successfully calibrated.

2 EXPERIMENTAL SET-UP

2.1 Enhanced compression test

From practical point of view the identification of ma-
terial parameters should be a procedure which is rea-
sonable simple to conduct. Due to this fact, in this re-
search standard uniaxial compression test of concrete
is considered, as an experiment which can be per-
formed in any civil engineering laboratory with typi-
cal experimental set-up on uniaxial testing machine.

First of all, cubic specimen should be prepared with
normalized procedures, i.e. proper curing of concrete,
sufficient time of strengthening, recommended di-
mensions: 0.15× 0.15× 0.15 [m3]. Upper and lower
specimen faces should be slightly polished to improve
surface smoothness.

Furthermore material examination should be per-
formed under standard conditions, typically speci-
men is compressed between two rigid plates, with
application of quasi-static displacement/load to the
upper surface of specimen during test. Boundary
conditions velocity should be 0.2 − 1.0 MPa/s with
strain rate not exceeding 10−6 1/s. In presented
paper experiments was carried out on an Instron
8500 (www.instron.tm.fr) four-column frame servo-
hydraulic fatigue testing machine with compressive
force capacities of up to 1000 kN (see Fig. 1) with
displacement protocol.

Through traditional test just few concrete param-
eters can be recognized, such as the Young modu-
lus E, the compressive strength σc or the crushing en-
ergy G. In this research we challenge to identify sev-
eral more variables embedded in a class of Drucker-
Prager constitutive laws (detailed description will be
presented in forthcoming section) without arranging
additional experiments on material sample. There-
fore introduced typical compression test should be



Figure 1: Hydraulic testing machine Instron 8500 for performing
static, fatigue and dynamic tests

enhanced by additional procedure, which will extract
more information from a single test.

For this purpose, noncontacting measurements of
displacements field by digital image correlation (DIC)
is considered to be performed. Main idea of combin-
ing DIC with compression test is to obtain displace-
ments field on the specimen front surface by cam-
era images in certain snapshots of applied upper sur-
face displacement. In addition to enriched experimen-
tal data, numerical model of phenomena should be
build, where the only unknowns will be material pa-
rameters. Hence by solving inverse problem, namely
minimizing discrepancy between two measurements
(experimentally measured and numerically computed
displacements on each iteration) material parameters
of applied constitutive law can be determined.

2.2 Digital image correlation

Digital image correlation employment in experimen-
tal tests can significantly improve material charac-
terization. Nowadays such measurement technique is
widely developed and used for practical engineering
problems, (see e.g. Garbowski et al. 2011, Bolzon
et al. 2012, Tekieli and Slonski 2013). The general
idea is to obtain displacements or strains field only
by analyzing pictures of recorded object, in our case
displacements of front specimen surface are tracked.

DIC system requires the following elements: spe-
cially prepared surface of sample (white-black ran-
domly sprayed a paint pattern called speckle pat-
tern), digital camera (for taking pictures during mea-
surements) and correlation software (here home-made
code was developed).

Correlation algorithm uses data stored in
monochromatic pictures, namely color values of
pixels, which vary between 0 and 255, which corre-
spond to black and white color, respectively. Region
of image interest is divided into small zones of inter-
est (ZOI), which later forms vertex of displacement
field mesh. Function in eq. (4) measures how well

b) c)a)

Figure 2: Different three ZOI examples of DIC determination,
column (a) reference images from camera, column (b) converged
(computed) solutions and column (c) deformed images - original
from camera

data from two images (on ZOI level), namely: (i) an
experimental field of displacements - f(x, y) (with
particular displacement/load applied) and (ii) g(x′, y′)
- a computed field of displacements (on the basis of
undeformed state picture), correlates.

S

(
x, y, u, v,

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

)
=

= 1−Ci(f (x, y) , g (x′, y′)). (4)

Computed solution is iteratively improved by mini-
mization algorithm, which searches for a desired val-
ues of deformation field of ZOI (displacements x and
y, normal strains u and v and finally shape changes
∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y). In a criterion Ci

different types of formulas can be used, the most ro-
bust are zero normalized cross-criterion (ZNCC) and
zero normalized sum squared difference (ZNSSD),
their advantage among others criterion is e.g. insen-
sitivity to variations in lighting conditions, (for more
details see e.g. Pan et al. 2009, Sutton et al. 2009).

Finally the robust optimization algorithm should be
used. In this research Newton-Raphson method was
involved, where the procedure focus on calculation of
correction terms which are changed in each iteration
starting from initial guess. Hence the starting point
needs to be relatively close to optimal solution.

Three ZOI examples of DIC home-made software
exploration are presented in the Fig. 2, where middle
column shows converged solutions (which is calcu-
lated in optimization loop only by modifying fields
from left hand side column - undeformed state) to im-
ages taken during test (right hand side). For each case
(row) unknown values of x, y, u, v, ∂u/∂x, ∂u/∂y,
∂v/∂x and ∂v/∂y were obtained.
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Figure 3: (a) Yield surface according to the DP criterion in
principal stress space, (b) Deviatoric plane of DP and Mohr-
Coulomb criterion in terms of principal stress

3 DRUCKER-PRAGER PLASTICITY

3.1 Introduction

Depending on the purpose of representing specific
state of material (e.g. complex stress state, plastic be-
havior or creep) various models of concrete can be
employed. Concrete as a composite and granular ma-
terial needs peculiar description of constitutive behav-
ior. Many concrete models can be found in the liter-
ature, e.g. Rankine 1857, Resende and Martin 1985,
Lubliner et al. 1989. Among them one of the most
known and commonly used for granular material is
Drucker-Prager model originally proposed to describe
soil behavior by Drucker & Prager (1952) with later
modifications and extensions.

Drucker-Prager (DP) model is pressure-dependent
yield criterion (see Fig. 3a) where the plastic yielding
occurs when following equation is satisfied:√
J2(s) + ηp = d, (5)

where p is the equivalent pressure stress, J2 the sec-
ond invariant of the deviatoric stress and η and d are
material constants. It is worth to underline that dis-
cussed constitutive law is a smooth approximation
of the Mohr-Coulomb (MC) yield criterion. Material
model is formulated in terms of principal stress σi or
stress invariants and is represented geometrically by

circular cone with axis on the hydrostatic line. In ad-
dition, von Mises yield shape can be reconstructed if
η = 0.

Before further description would be recalled sev-
eral definitions have to be introduced, namely equiv-
alent pressure stress p, Mises equivalent stress q and
third invariant of deviatoric stress r, determined re-
spectively, as:

p = −1

3
tr (σ) ,

q =

√
3

2
(s : s),

r =

(
9

2
s · s : s

)1/3

(6)

where s, deviatoric stress, is calculated by the formula
s = σ + pI, with I as the second order identity tensor.

As previously indicated Drucker-Prager yield cri-
terion can approximate Mohr-Coulomb surface shape
(see Fig. 3b), after reference (de Souza Neto et al.
2008) yield function takes the form:

Φ(σ, d) =
√
J2 (s (σ)) + ηp (σ)− ξd, (7)

where η and ξ are selected from Mohr-Coulomb law.
Moreover yield surface of DP surface can coincident
with Mohr-Coulomb in two particular cases, on the
outer and inner edges of MC surface. For outer posi-
tion η and ξ should be read as:

η =
6 sinβ√

3 (3− sinβ)
, ξ =

6 cosβ√
3 (3− sinβ)

, (8)

and for outer locus:

η =
6 sinβ√

3 (3 + sinβ)
, ξ =

6 cosβ√
3 (3 + sinβ)

, (9)

where β is the angle of internal friction (opening an-
gle of yield surface cone in principal stress space,
known from Mohr-Coulomb law). Received cones are
called compression and extension cone, respectively,
for further details see (de Souza Neto et al. 2008).

3.2 Yield surface functions

Drucker-Prager models can vary between different
geometrical description of yield surface, from the
simplest - linear, through hyperbolic, to the most gen-
eral one - exponential relation.

Linear representation. Usually yield surface of
material is described by linear law:

Φ (σ, d) = t− p tanβ − d = 0, (10)
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Figure 4: Different geometrical representation of DP yield crite-
rion in meridional plane: (a) linear, (b) hyperbolic, (c) exponen-
tial

where d is the cohesion pressure of the material and
t, deviatoric stress measure, is defined by:

t =
1

2
q

[
1 +

1

K
−
(

1− 1

K

)(
r

q

)3
]
,

where K, called flow ratio, is the ratio between the
yield stress in triaxial tension and the yield stress in
triaxial compression. Influence of flow ratio K can
be simply presented in the deviatoric plane, which is
calculated in the terms of principal stresses σi, see
Fig. 3b. The yield surface convexity is ensured when
following condition is satisfied 0.778 ≤ K ≤ 1. Fi-
nally, when K is equal 1.0, t reduces to q.

In linear description, the projection of principal
stress in p− t plane called meridional plane is intro-
duced. The example of typical linear yield surface in
meridional plane is presented on the Fig. 4a.

Hyperbolic form. For this extension of the DP
model (see Fig. 4b), yield function reads:

Φ =

√(
d̄0 − p0t tanβ

)2
+ q2 − p tanβ − d̄ = 0, (11)

with d̄0 − initial cohesion of the material, p0t − ini-
tial hydrostatic tension strength of the material and
β − frictional angle measured for high pressure val-
ues. Presented eq. (11) is a mixed formulation of max-
imum tensile stress (for lower and negative values
of pressures) and linear DP criterion (for high pres-
sures).

Exponent relation. The most general yield surface
representation (see Fig. 4c) can be defined by expo-
nential function:

Φ = aqb − p− pt = 0, (12)

where a and b are the constants of function in p-q
plane and pt is the hydrostatic tension strength of the
material.

3.3 Plastic flow

In multidimensional plasticity models the existence of
flow potential is assumed:

Ψ = Ψ (σ, κ) , (13)

where κ is hardening thermodynamical force. Two
class of flow rule, called associative and non-
associative potential, can be distinguished. Associa-
tive models read:

Ψ ≡ Φ, (14)

where plastic potential Ψ is equal to yield function. In
such models evolution of plastic surface is calculated
by expression

ε̇p = γ̇
∂Ψ

∂σ
, (15)

where γ̇ is the plastic multiplier. In addition plastic
strain rate is normal to the yield surface (unlike in the
non-associative rule). Although if flow potential Ψ is
different then yield function Φ then non-associative
description is considered, for further details see e.g.
de Souza Neto et al. 2008.

4 PSEUDO-EXPERIMENTAL EXAMPLES

In mixed numerical/experimental techniques pseudo-
experimental verification play crucial role before con-
ducting inverse procedure examination on real test
data. In the first place we have to assume values
of sought parameters (inputs), which later will be
searched and called reference one. Moreover, two dif-
ferent FE models should be prepared, one to obtain
pseudo-experimental quantities (outputs) for assumed
reference parameters (e.g. system with finer mesh)
and second for inverse analysis performance. Recent
model will be submitted on each step of procedure
to minimize the differences in displacements between
pseudo-experimental field (noised and truncated to
the accuracy of 1µm, two orders less then applied dis-
placement) and numerical one.

Here the compression test was modeled by one
quarter of cubic specimen with relevant symmetri-
cal conditions and application of upper surface ver-
tical displacement of few millimeters. Sample space
was discretized by 4960 number of solid three-
dimensional eight-node reduced integration elements
with linear shape functions.

Results of concrete characterization through
pseudo-experimental data are depicted in Figs. 6-14.
Each plot shows the calibration procedure of different



Table 1: The residual discrepancy of identified parameter with respect to their reference values represented in percentage

DP surface hardening def. E β K ψ σ0 H p0t a b

compression 0.1 1.5 0.3 0.3 0.1 1.9 – – –
linear shear 0.3 0.3 0.2 0.0 0.2 1.0 – – –

tension 0.0 2.7 1.1 0.5 0.1 2.1 – – –
compression 0.2 0.3 – 0.4 0.1 0.8 0.5 – –

hyperbolic shear 0.2 0.7 – 1.0 0.6 1.4 2.4 – –
tension 0.0 1.0 – 1.1 0.6 1.7 1.5 – –
compression 0.5 – – 0.1 0.2 1.6 – 16.2 1.4

exponential shear 0.0 – – 0.0 0.0 0.0 – 11.2 0.7
tension 0.2 – – 0.1 0.1 0.4 – 45.6 1.7

form of yield criteria Φ in Drucker-Prager constitu-
tive function, namely linear (Figs. 6-8), hyperbolic
(Figs. 9-11) and exponential (Figs. 12-14). Yield
surface groups can be classified further, due to
its hardening definition. For each type of DP law,
evolution of the yield surface described in terms of
the equivalent stress may be defined in yield stress of
uniaxial compression (Figs. 6, 9, 12), shear (cohesion,
Figs. 7, 10, 13) or uniaxial tension (Figs. 8, 11, 14).

Figures 6-14 in (a) subplots illustrate convergence
of the inverse analysis to the normalized values of pa-
rameters (xi/xREF

i ), (b) subplots demonstrate the pro-
gressive changes of objective function. At this point
it is important to underline that the characteristic
plateaus, observed on objective function plots (see
Figs. 6b-14b), are due to noisy pseudo-experimental
data used in all examples.

According to the presented results in most cases un-
known parameters converge to their reference values
(i.e. to one in the normalized space) after 6−16 itera-
tions, the only exception is hyperbolic DP with hard-
ening defined by tension, where more then 35 itera-
tions were required.

In the Tab. 1 the brief summary of all performed
numerical examples is presented. Taking together all
parameters embedded in different constitutive varia-
tion of DP model, namely: E - the Young modulus,
β - the internal angle of friction, K - the ratio of the
yield stress in triaxial tension to the yield stress in tri-
axial compression, Ψ - the dilatation angle, H - the
hardening slope, σ0 - the yield stress, p0t - the initial
hydrostatic tension strength and a, b - the linear, expo-
nential coefficient, respectively, all corresponding dis-
crepancies between identified active parameters and
their reference values are gathered in the Table.

As it can be noticed, most of the inverse analy-
ses converged to the right solution with a discrep-
ancy on the reasonably low level (usually below 2%).
This confirms that the proposed mixed experimen-
tal/numerical method applied for DP material model
characterization is valid and robust. It is also visi-
ble that for some parameters (e.g. a in an exponential
variation of DP) the discrepancy is rather high which
can be justified by a low sensitivity of measurements
with respect to this particular parameter.

The sensitivity analysis was conducted here for
each case separately, however, because it is beyond
the main scope of this paper only one plot is here pre-
sented, see Fig. 5. The example considers exponential
DP analysis with compression hardening. This is to
demonstrate that the sensitivities of measurable quan-
tities (here the vertical and horizontal displacements
and reaction force) with respect to parameter a are
significantly smaller then for other constants. Due to
low sensitivities of this parameter its identification is
unlikely what can be also noticed in Figs. 12-14.
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Figure 5: Sensitivities of measurable quantities: (a) displace-
ments field in x-direction, (b) displacements field in y-direction
and (c) reaction forces, with respect to the exponential DP
model parameters with hardening defined by shear yield stress

Formal expression for sensitivity calculations are
as follows:

sux(xi) =
N∑

n=1

{
1− ‖ux

n(xi)‖/‖ux
n(xREF

i )‖
δ

}
(16)

suy(xi) =
N∑

n=1

{
1− ‖uy

n(xi)‖/‖uy
n(xREF

i )‖
δ

}
(17)

sr(xi) =
N∑

n=1

{
1− rn(xi)/rn(xREF

i )

δ

}
(18)

where sux(xi), suy(xi), sr(xi) are sensitivity values
for i-th parameter in terms of horizontal displace-
ment ux, vertical displacement uy and reaction force



of upper concrete surface in vertical direction r, re-
spectively; δ is perturbation value and equals 0.01;
ux
n(xREF

i ), uy
n(xREF

i ) and rn(xREF
i ) are reference displace-

ment fields (in x and y direction) and reaction, respec-
tively (computed by pseudo-experimental FE model
in n-th snapshot); ux

n(xi), uy
n(xi) and rn(xi) are fields

computed in similar way but by the numerical model
in inverse procedure; n = 1 . . .N is a snapshot num-
ber (here the total number of intervals N is equal 10).

5 CONCLUSIONS

Calibration of concrete material with its numerous
constitutive parameters usually requires several tests
at different level of difficulties and specimen con-
figurations. Here, a simple procedure combining a
standard uniaxial test, DIC measurements and in-
verse analysis highlights a successful characterization
of the selected material constants for concrete. By a
proper selection of identification tools, namely a fast
DIC algorithm, a robust minimization technique and a
careful selection of the appropriate constitutive model
for a numerical test simulation, one can easily find a
set of sought parameters from a single and typical lab-
oratory test.

Additional equipment (such as a camera and DIC
algorithm) resulting in additional measurements from
a single test, clearly helps to identify more parame-
ters. Such an approach, however, also requires a com-
puter with specialized software for both photograph
correlation and numerical simulations. This might be
viewed as a limitation especially when tests have to
be performed on a routine basis in laboratories. A
remedy to the underlined limitation of the presented
method could be to preliminarily prepare the models
and to simulate the tests on a powerful computer, us-
ing a wide range of variations in parameters, which
can be later used to build an approximation of the
model. Using model reduction techniques (such as
artificial neural networks, polynomial approximation,
radial basis functions approximation, Gaussian pro-
cesses, etc.), one can speed up parameter identifica-
tion by several orders of magnitude.

The methodology presented in this paper of iden-
tification of concrete parameters from a single test
can furthermore be successfully used without heavy
computation so long that an approximation of the
direct model has been constructed. The numerical
model and/or its surrogate require the previously pre-
sented combination of DIC measurements together
with a rapid correlation algorithm, and efficient ex-
perimental and inverse techniques in order to provide
a fast and robust characterization of a complex model
from a simple test. It is evident from the presented
examples that standard testing information (i.e. the
force-displacement curve) enhanced with DIC mea-
surement and inverse analysis can be used to success-
fully calibrate a concrete material model.
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Figure 8: (a) Convergence curves for linear DP constitutive
law with hardening defined by tension yield stress σ0, pseudo-
experimental approach with noised data (accuracy - 1µm),
(b) Convergence of cost function



C
o
st

 f
u

n
c
ti

o
n
 [

-]

10-1

100

101

10-2

N
o

rm
a
li

se
d

 p
a
ra

m
e
te

rs
 [

-]

1.2

1.1

1.0

0.9

Number of iteration [-] Number of iteration [-]

1.4

1.3

a) b)

E

ψ

H

pt
0

σ0

β

0         2 4          6          8 0         2 4          6          8

Figure 9: (a) Convergence curves for hyperbolic DP constitu-
tive law with hardening defined by compression yield stress
σ0, pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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Figure 10: (a) Convergence curves for hyperbolic DP consti-
tutive law with hardening defined by shear yield stress σ0,
pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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Figure 11: (a) Convergence curves for hyperbolic DP con-
stitutive law with hardening defined by tension yield stress
σ0, pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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Figure 12: (a) Convergence curves for exponential DP consti-
tutive law with hardening defined by compression yield stress
σ0, pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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Figure 13: (a) Convergence curves for exponential DP con-
stitutive law with hardening defined by shear yield stress σ0,
pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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Figure 14: (a) Convergence curves for exponential DP con-
stitutive law with hardening defined by tension yield stress
σ0, pseudo-experimental approach with noised data (accuracy -
1µm), (b) Convergence of cost function
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