
Efficient methods for optimal space filling in model reduction techniques

V. Buljak
Faculty of Mechanical Engineering, Department of Strength of Materials
University of Belgrade, Serbia

T. Garbowski
Institute of Structural Engineering
Poznan University of Technology, Poland

ABSTRACT: Model reduction techniques generate low-dimensional models to parametrize PDEs in order to
allow for efficient evaluation of highly non-linear problems in many-query and real-time context. Computing
time in these methods is divided into a time consuming “off-line” phase needed to “train” a surrogate model,
which is further used in “on-line” phase providing accurate results in a much faster way. The accuracy of these
methods is strictly connected to the number of points in which the system response is previously computed and
on their distribution in a parameter space. For a given number of analysis decided to be “invested” for the design
of surrogate model, the accuracy can be further improved by the adequate distribution of them in a parameter
space. Two methods of robust samples distribution are proposed here. A first method is based on interactive
nodes aimed to optimize the distribution of them. A second is based on an optimal Latin hypercube design.
Both presented methods are flexible with respect to the number of nodes involved and they can provide uniform
distribution for any arbitrary number of them. Furthermore, they allow also for taking into account different
importance of divers parameters.

1 INTRODUCTION

Inverse analysis and parametric studies require a large
number of time consuming analyses that differ be-
tween each other just by a few parameters which are
changing from one simulation to another. For these
purposes recently became popular the use of model
reduction techniques aimed to design low-order mod-
els capable of evaluating responses of complex sys-
tems within drastically reduced computing time. Sur-
vey of different applications of model reduction tech-
niques based on Proper Orthogonal Decomposition
(POD) is given in (Ruckelynck et al. 2006). Similar
methods based on Proper Generalized Decomposition
(PGD) are developed and applied in computational
fluid dynamics and in computational fracture mechan-
ics (see e.g. Rozza et al. 2008, Nouy 2010).

Mechanical characterization of materials at present
means primarily identification of the parameters en-
tering into constitutive models implemented in com-
puter codes oriented to non-linear inelastic structural
analysis. These parameters are frequently estimated
based on experiments, like instrumented indentation
test, performed on site on a working components (see
e.g. Buljak et al. 2013, Buljak and Maier 2012). In

order to solve resulting inverse problems economi-
cally one needs to make a recourse to a certain re-
duced basis technique. Frequently the number of pa-
rameters to assess within the inverse analysis proce-
dure is rather large (see e.g. Gajewski and Garbowski
2014, Garbowski et al. 2012, Garbowski et al. 2011)
and the identification procedure by traditional means
(i.e. FEM used for test simulation) involves signifi-
cant computing time.

In general, all model reduction techniques have in
common a computational strategy which consist in
an a priori time consuming computation done once-
for-all, which precedes a routine repeated computa-
tion that makes the use of previously generated re-
sults. By increasing the number of simulations done
as a part of a preliminary “training” it is obvious that
the error of surrogate model will be decreased, but for
any given number of them, the optimization of error is
strictly connected to their distribution. Therefore the
location of experimental data points is very important
for generating accurate meta-models, while maintain-
ing a reasonable number of them.

This paper presents a revised methodologies for
obtaining optimal space filling designs with minimal
computational effort and having vary good space fill-

ing properties. First approach is based on so-called
bubble mesh methods (see Section 2) which produce
the most optimal possible design, however requires
longer computational time. The second method is
based on enhanced Structured Optimal Latin Hyper-
cube design (see Section 3) which provides almost-
optimal solution in real time.

2 INTERACTIVE NODES METHOD

The problem of finding the most uniform distribution
of sampling points in the parameter space is addressed
here by a novel method based on dynamic simula-
tion of interactive nodes, inspired by so-called bubble
mesh method for generation of finite element meshes,
proposed by Shimada and Gossard (1998) and Shi-
mada et al. (2000). The approach takes any arbitrary
distribution of sampling points, attributing a unitary
mass to each of them, and introducing repulsive forces
which are inversely proportional to the distances be-
tween the nodes. Once the forces acting on each node
are defined, a dynamic simulation is performed with
explicit time integration scheme that should result in
a distribution of nodes which corresponds to the equi-
librated state. Since the forces are inversely propor-
tional to the distances between the nodes, the equi-
librated state of forces will correspond to the uni-
form distribution of the nodes (i.e. sampling points).
In order to have the nodes eventually resting in equi-
librated position also a damping force needs to be in-
troduced which is taken here as linearly proportional
to the velocity.

The sequence of operative stages proposed in the
present context that eventually leads to the uniform
distribution of sampling points in the parameter space
can be outlined as follows: (i) a random distribution of
M sampling points is taken as a starting distribution
that covers normalized parameter space (i.e. each of
N parameters is normalized to be within 0 and 1 lim-
its); (ii) repulsive forces are calculated acting on each
ofM points resulting both from other points and from
“walls” (i.e. boundaries) of the domain, in order to
keep the points inside the domain; (iii) dynamic sim-
ulation with explicit integration scheme is performed
on a set of nodes in order to find the equilibrated dis-
tribution; (iv) mapping the final distribution of nodes
to cover 0 to 1 normalize space, as the equilibrated
distribution will be moved away from “walls” due to
the repulsive forces from them.

For any single node to be in the equilibrium it is re-
quired to be surrounded by nodes which are on equal
distances from it. This is clearly satisfied for any node
in the regular grid since then, along any axis there are
two equidistant nodes on each side resulting in equal
forces with opposite directions (see Fig. 1). In order
to keep this distribution in the equilibrium, it is im-
portant not to have other forces from nodes which are
farther than the neighboring four. This is achievable
by assuming the setup of forces which are inversely

Figure 1: Set of forces acting on nodes of regular grid

proportional to the distance between the nodes but are
active only if the nodes are on a shorter distance than
some previously defined as critical one. This distance
can be calculated for the case of regular grid, namely:

dcr =
1

1+ N
√
M

(1)

Presented scheme turns out to work reasonably
well also for multidimensional cases with arbitrary
number of nodes, as it will be demonstrated within
the examples in Section 4.

3 OPTIMAL LATIN HYPERCUBE DESIGN
METHOD

Another efficient method which can be employed for
optimal space filling is a technique called Latin Hy-
percube Design (LHD). The LHD in N variables and
in M points is constructed as follows. Each of the N
design variables is divided intoM equally spaced lev-
els and only one point is allowed to occupy each level.
Often Latin Hypercube design is constructed using
a random procedure. Such a process results in many
possible designs, each satisfying the Latin Hypercube
condition of only one point per every level. The to-
tal number of distinct designs can be computed by the
formula:

ND = (M !)N−1 (2)

where: ND is a number of possible designs; M is
a number of points; and N is a number of design
variables (LHD dimensionality). It can be easily no-
ticed that for very simple design as e.g. 16× 2 there
is approximately 2 · 1013 admissible distributions of
points. Obviously, random procedure does not pre-
vent the possibility of creating a design, where all the
points are located e.g. along the diagonal of the design
space, thus resulting in poor statistical qualities of
the experimental design. To overcome this problem,
Optimal Latin Hypercube was introduced by McKay
et al. (1979) and Iman and Conover (1980) to im-
prove the space filling property of the design. In Op-
timal Latin Hypercube the points are being “pushed
away” from each other as much as possible. This

last condition proved to be quite an obstacle for real-
time creation of the Optimal Latin Hypercube de-
signs. This problem is often solved using evolution-
ary algorithms, such as Genetic Algorithms (see e.g.
Bates et al. (2004)) or Enhanced Stochastic Evolu-
tionary Algorithm (ESEA) proposed by Jinb et al.
(2005). ESEA is an enhanced version of the Stochas-
tic Evolutionary Algorithm, developed by Saab and
Rao (1991). The ESEA is algorithm proved to be rela-
tively fast in generating the Optimal Latin Hypercube
designs, unlike the Genetic Algorithm implementa-
tion. Such efficiency is explained by the use of the
element-exchange algorithm and efficient evaluation
of the optimality criterion:

φp =

M−1∑
i=1

M∑
j=i+1

d−p
ij

1/p

(3)

where p is a positive integer, M is the number of
points in the design, and dij is the inter-point dis-
tance between all point pairs in the design. The gen-
eral inter-point distance between any point pair xi and
xj can be expressed as follows:

dij = d (xi,xj) =

[
N∑
k=1

|xik − xjk|t
]1/t

(4)

whereN is a number of design variables. Here p= 50
and t = 1 are used. Minimizing the value of perfor-
mance measure φp leads to the maximization of point-
to-point distance in the design.

3.1 Structured LHD

Another empirical approach to create a well struc-
tured design (rather than based on random number
generation) that is reasonably close to Optimal Latin
Hypercube design without performing optimization
was proposed by Viana et al. (2010). The importance
of such approach resides in the fact that it gives the
capability to create a Latin Hypercube design that
has better space filling properties than the standard
Latin Hypercube design, using minimum computa-
tional time. The resulting design can be used either
as an initial design for the Optimal Latin Hypercube
generator algorithm (such as Genetic Algorithm or
ESEA) or as a good approximate Optimal Latin Hy-
percube design. In this case, one should take into ac-
count a compromise between obtaining best possible
Optimal Latin Hypercube design and the computa-
tional cost to generate such design.

The approach is quite simple and it is based on
the assumption that the simple N -dimensional Latin
Hypercube can be constructed from a N -dimensional
seed design. The procedure can be divided basically
into two steps: (a) first, a small LHS is constructed to
be used as a seed in the process. Figure 2 shows some
examples of 2-dimensional seed designs. (b) second,
the design space is divided into blocks, in such a way

that each dimension is divided in the same number of
blocks. The result is that each block can be filled using
the seed design (defined previously) but enhanced by
additional levels (see Fig. 3). The seed design must be
done a priori and later properly placed into each of the
blocks. The biggest advantage of this approach is that
there are no calculations to perform. All operations
can be viewed as translations of an N -points block in
the N -dimensional hypercube.

Figure 2: Seed design: examples for 2 design variables

new levels new levels

Figure 3: 12× 2 SLHD: two examples of 3-node seed in 2 design
variables

3.2 Seed design

The presented methodology for optimal space filling
has, however, one important disadvantage: it is not
clear how to select a priori the best seed design to get
overall optimal or close to optimal Structured Latin
Hypercube Design. One possible choice would be to
select the seed design which has the smallest φp value,
however, this may lead to non-optimal global solution
once the full design is assembled from the blocks of
seeds. Table 1 shows all 24 possible seed design con-
sisting of 4 nodes in 2 dimensional parameter space
and corresponding φp values for single seed design
(4× 2) as well as for 16× 2 and 96× 2 SLHD. It is
clear that the best seed design is not always resulting
in the best SLHD, in contrary it may provide rather
poor quality solution.

Moving to higher dimensional spaces the number
of possible seed designs is growing according to for-
mula (2), where total number of points M is now sub-
stituted with the number of nodes in a seed design S,
so the formula reads:

NSD = (S!)N−1 (5)

where S is much smaller than M .
Figure 4 shows all possible 3-node seed design in

2D space and an example of simple transition of a

Table 1: All possible 4-node seed designs in 2D space and cor-
responding performance of 4× 2, 16× 2 and 96× 2 LHD

seed design φp(4×2) φp(16×2) φp(96×2)

2.16845 5.57352 14.8611

2.16845 10.6066 18.1251

2.15093 5.52851 14.8113

2.15093 6.89680 16.4113

2.15093 5.52851 14.7326

2.15093 5.52851 14.8096

2.15093 5.52851 14.8096

2.15093 5.52851 14.8159

2.15093 6.89680 16.3114

2.15093 5.52851 14.8238

2.15093 5.52851 14.8238

2.15093 6.89680 16.2019

2.12132 5.45240 14.5541

2.12132 10.6066 18.1251

2.12132 5.45250 14.6315

2.12132 5.45250 14.6315

2.12132 6.80185 15.9881

2.12132 6.80185 16.0868

2.12132 6.80185 16.0868

2.12132 5.45250 14.6074

2.12132 5.45250 14.6074

2.12132 6.80185 15.9692

1.37936 6.80185 16.0843

1.37936 6.80185 16.0843

selected solution to 3D space. In the case of 3-node
seed in 2D space, the six possible designs transform
to thirty-six designs if we move to 3D space. Table 2
presents all possible solutions of 3-node seed design
in 3D space and corresponding values of φp of 3× 3
or 96 × 3 SLHD. Again it is visible that not all the
best seed design (bolded values in Tab. 2) result in
good SLHD.

Figure 4: (a) all possible 3-node seed designs in 2D space; (b)
transition from 3× 2 seed to 3× 3

Here presented examples provide an important
knowledge about performance of selected seed de-
signs and their influence on Structural Latin Hyper-
cube Design. It is clear that for the small designs a
systematic search within the admissible seed designs
can be used to find the most optimal SLHD, how-
ever the number of solution grows exponentially with
the space dimension. So for e.g. 4-node seed in 12-
dimensional space the number of designs equals to
nd = (4!)11 = 2411 ≈ 1.5 · 1015. Therefore for high-
dimensional spaces the optimization by ESEA or GA
should be performed or alternatively the smaller seed
design should be selected.

4 EXAMPLES

In order to evaluate the performance of different space
filling algorithms, three numerical examples on differ-
ent scales are treated in what follows.

First exercise considers a problem of distribution of
90 samples in 2D space. This example illustrates the
capability of space filling methods to provide rather
uniform distributions for the problems in smaller
scale (i.e. 2D in this case) when the number of nodes
is not equal to the one required for forming a regular
grid. Four different distributions are compared. The
first one (Figure 5a) considers purely random distri-
bution. The second one (Figure 5b) is the distribution
which satisfies Latin Hypercube criterion, generated
by random permutation procedure. The third distri-
bution (Figure 5c) is the one resulting from Interac-
tive Nodes Method described in Section 2. Fourth dis-
tribution (Figure 5d) is generated by the Structured
Latin Hypercube Design procedure described in Sec-
tion 3. All four resulting distributions are quantita-
tively compared by calculating values of φp (equa-
tion (3) with p = 50 and t = 1). Resulting values are

Table 2: All possible 3-node seed designs in 3D space and cor-
responding performance of 3× 3, 96× 3 LHD

point 1 point 2 point 3 φp(3×3) φp(96×3)

[1,1,1] [2,2,2] [3,3,3] 0.5854 0.0465
[3,1,1] [2,2,2] [1,3,3] 0.5854 0.0667
[2,1,1] [3,2,2] [1,3,3] 0.5774 0.0381
[3,1,1] [1,2,2] [2,3,3] 0.5774 0.0379
[1,1,1] [3,2,2] [2,3,3] 0.5774 0.0467
[2,1,1] [1,2,2] [3,3,3] 0.5774 0.0467
[1,3,1] [2,2,2] [3,1,3] 0.5854 0.0850
[3,3,1] [2,2,2] [1,1,3] 0.5854 0.1379
[2,3,1] [3,2,2] [1,1,3] 0.5774 0.0449
[3,3,1] [1,2,2] [2,1,3] 0.5774 0.0449
[1,3,1] [3,2,2] [2,1,3] 0.5774 0.0594
[2,3,1] [1,2,2] [3,1,3] 0.5774 0.0594
[1,2,1] [2,3,2] [3,1,3] 0.5774 0.0407
[3,2,1] [2,3,2] [1,1,3] 0.5774 0.0436
[2,2,1] [3,3,2] [1,1,3] 0.5774 0.0438
[3,2,1] [1,3,2] [2,1,3] 0.4173 0.0358
[1,2,1] [3,3,2] [2,1,3] 0.4173 0.0380
[2,2,1] [1,3,2] [3,1,3] 0.5774 0.0424
[1,3,1] [2,1,2] [3,2,3] 0.5774 0.0405
[3,3,1] [2,1,2] [1,2,3] 0.5774 0.0437
[2,3,1] [3,1,2] [1,2,3] 0.4173 0.0360
[3,3,1] [1,1,2] [2,2,3] 0.5774 0.0440
[1,3,1] [3,1,2] [2,2,3] 0.5774 0.0425
[2,3,1] [1,1,2] [3,2,3] 0.4173 0.0380
[1,1,1] [2,3,2] [3,2,3] 0.5774 0.0498
[3,1,1] [2,3,2] [1,2,3] 0.5774 0.0565
[2,1,1] [3,3,2] [1,2,3] 0.4173 0.0408
[3,1,1] [1,3,2] [2,2,3] 0.5774 0.0540
[1,1,1] [3,3,2] [2,2,3] 0.5774 0.0539
[2,1,1] [1,3,2] [3,2,3] 0.4173 0.0444
[1,2,1] [2,1,2] [3,3,3] 0.5774 0.0499
[3,2,1] [2,1,2] [1,3,3] 0.5774 0.0565
[2,2,1] [3,1,2] [1,3,3] 0.5774 0.0540
[3,2,1] [1,1,2] [2,3,3] 0.4173 0.0408
[1,2,1] [3,1,2] [2,3,3] 0.4173 0.0444
[2,2,1] [1,1,2] [3,3,3] 0.5774 0.0539

listed in Table 3. Clearly, the worst distribution (i.e.
the one with largest value of φp) is random distribu-
tion since this one is not offering any control over uni-
formity. Distribution that satisfies LHD criterion cov-
ers the space more uniformly than random one, and
in terms of uniformity is somewhere in between the
results obtained by the last two methods and a pure
random distribution. The value of φp confirms what
can be observed from Figure 5, namely that the last
two distributions are much better, while IntNod one is
slightly outperforming a SLHD one. Finally, the last
column in Table 3 gives the φp value for the regular
10× 9 grid.

Second exercise considers larger scale problem,
namely the distribution of 2000 sampling points in
8D space. For this case there is rather large differ-
ence in required number of points to form regular grid
of 2 points per axis and 3 points per axis, namely,

a) b)

c) d)

Figure 5: Distribution of 90 points in 2-dimensional space by:
(a) random uniform generator, (b) Latin Hypercube Design, (c)
interactive nodes algorithm, (d) Structured Latin Hypercube De-
sign.

Table 3: The performance measurement of 5 methods of points
distribution in 2-dimensional parameter space

RAND LHD IntNod SLHD regular grid

48.56 31.27 9.37 10.83 9.83

28 = 256 and 38 = 6561. The example illustrates that
quite uniform distribution is obtained with any arbi-
trary number of points and therefore the distribution
can be improved by using smaller number of sampling
points than the one required to “jump” from one reg-
ular grid to another. The problem is solved by using
both IntNod method and SLHD and for the resulting
distributions φp value is calculated. For this case the
corresponding values of φp were equal to 1.88 and
2.66 for IntNod and SLHD, respectively.

The last example is of the largest scale: the distri-
bution of 8000 sampling points in 14D space. This ex-
ample intends to show the full potential of space fill-
ing methods where forming of regular grid involves
fairly large number of sampling points and therefore
is practically not manageable. In order to evaluate the
uniformity of the resulting distribution a following
criterion is introduced. To each node from the final
distribution it is attributed the distance to the clos-
est neighbor in normalize parameter space. A graph
is then plotted with the identity of the node put on
abscissa and the above mentioned distance to the or-
dinate. Should the distribution be uniform, line on
the graph would be almost flat as each point will
have at the same distance from it another sampling
point. Figure 6 shows this graph for starting (Fig-
ure 6a) and final (Figure 6b) distribution computed
by IntNod method, and the distribution computed by
SLHD (Figure 6c). Practically the same flat line is ob-
tained for both distributions computed by IntNod and
SLHD methods evidencing the uniformity of the re-
sulting distribution.

Tables 4 and 5 present the values of φp criterion for
different designs, namely: random, LHS, OLHS with
1000 random permutation iterations, SLHD for differ-
ent seed design and IntNod. It is clear from the results

that in case of high-dimensional parameter’s spaces
the IntNode has the best space filling properties.

Figure 6: Distance between the closest neighbors; starting distri-
bution (top figure), final distribution computed by IntNode (mid-
dle figure) and final distribution computed by SLHD (bottom
figure)

5 CONCLUSIONS

The study presented in what precedes has shown the
importance of the use of uniform space filling meth-
ods in combination with reduced basis (RB) tech-
niques. Both of the tested methods turned out to
produce uniformly distributed samples in computing
times that are insignificant compared to the time re-
quired for the training of reduced basis model.

In general, the error of RB models is connected to
the number of sampling points used in the training
phase. Enlarging this number however, extends the
time employed for the training. Results presented in
this paper showed that for the same cost of the training
in terms of computing time involved, by using space

Table 4: performance of different designs (2000 points in 8-
dimensional space)

design φp

regular (28 = 256) 1.1487
regular (38 = 6561) 2.4655
interactive nodes 1.8810
SLHD (3× 8) 2.6618
SLHD (2× 8) 2.9650
SLHD (1× 8) 2.7029
OLHD (103 iter.) 5.3854
LHD 6.6741
random 7.9221

Table 5: performance of different designs (8000 points in 14-
dimensional space)

design φp

interactive nodes 1.1097
SLHD (3× 14) 2.5219
SLHD (2× 14) 1.5379
SLHD (1× 14) 1.8348
OLHD (103 iter.) 2.6946
LHD 2.8439
random 3.4266

filling methods a further reduction of the error of RB
model can be achieved.

For small scale problems these methods are offer-
ing better control over the error and possibility to use
virtually any number of sampling points, and not only
those enough to form a regular grid. The importance
of space filling methods is even more evident in large
scale problems, where regular grids practically can-
not be formed, as the number of sampling points re-
quired for it grows exponentially with the number of
parameters. For such cases space filling methods are
the only alternative to the random distribution of sam-
pling points, and therefore the only possibility to con-
struct RB model with controllable error.

The error of RB model depends also on problem
at hand, and therefore it may occur that not the same
density of the distribution is required in all of the re-
gions of the parameter space. Research in progress
concerns the extension of the presented approach to
take into account the local error as a criterion for the
distribution of the sampling points in the parameter
space.

REFERENCES

Bates, S., J. Sienz, & V. Toropov (2004). Formulation of the op-
timal latin hypercube design of experiments using a permuta-
tion genetic algorithm. In 45th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference.

Buljak, V., G. Cocchetti, & G. Maier (2013). Calibration of brit-
tle fracture models by sharp indenters and inverse analy-
sis. International Journal of Fracture. DOI: 10.1007/s10704-
013-9814-4.

Buljak, V. & G. Maier (2012). Identification of residual stresses
by instrumented elliptical indentation and inverse analysis.

Mechanics Research Communications 41, 21–29.
Gajewski, T. & T. Garbowski (2014). Calibration of concrete

parameters based on digital image correlation and inverse
analysis. Archives of Civil and Mechanical Engineering.
http://dx.doi.org/10.1016/j.acme.2013.05.012.

Garbowski, T., G. Maier, & G. Novati (2011). Diagnosis of con-
crete dams by flat-jack tests and inverse analyses based on
proper orthogonal decomposition. Journal of Mechanics of
Materials and Structures 6(1-4), 181–202.

Garbowski, T., G. Maier, & G. Novati (2012). On calibration of
orthotropic elastic-plastic constitutive models for paper foils
by biaxial tests and inverse analyses. Structural and Multi-
disciplinary Optimization 46, 111–128.

Iman, R. & W. Conover (1980). Small sample sensitivity anal-
ysis techniques for computer models, with an application to
risk assessment. Communications in Statistics - Theory and
Methods 17, 1749–1842.

Jinb, R., W. Chena, & A. Sudjianto (2005). An efficient algo-
rithm for constructing optimal design of computer experi-
ments. Journal of Statistical Planning and Inference 134(1),
268–287.

McKay, M., R. Beckman, & W. Conover (1979). A comparison
of three methods for selecting values of input variables from
a computer code. Technometrics 21, 239–245.

Nouy, A. (2010). A priori model reduction through proper gen-
eralized decomposition. Computer Methods in Applied Me-
chanics and Engineering 199, 1603–1626.

Rozza, G., D. Huynh, & A. Patera (2008). Reduced basis ap-
proximation and a posteriori error estimation for affinely
parametrized elliptic coercive partial differential equations -
application to transport and continuum mechanics. Archives
of Computational Methods in Engineering 15 (3), 229–275.

Ruckelynck, D., F. Chinesta, E. Cueto, & A. Ammar (2006).
On the a priori model reduction: Overview and recent devel-
opments. Archives of Computational Methods in Engineer-
ing 13(1), 91–128.

Saab, Y. & Y. Rao (1991). Combinatorial optimization by
stochastic evolution. IEEE Transactions on Computer-Aided
Design 10, 525–535.

Shimada, K. & D. Gossard (1998). Automatic triangular mesh
generation of trimmed parametric surfaces for finite element
analysis. Computer Aided Geometric Design 15(3), 199–222.

Shimada, K., A. Yamada, & T. Itoh (2000). Anisotropic triangu-
lation of parametric surfaces via close packing of ellipsoids.
International Journal of Computational Geometry and Ap-
plications 10(4), 301–324.

Viana, F., G. Venter, & V. Balabanov (2010). An algorithm for
fast optimal latin hypercube design of experiments. Inter-
national Journal for Numerical Methods in Engineering 82,
135–156.

