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Abstract

In the present paper the short review of popular anisotropic constitutive models enhanced by the continuum damage models is presented.
The attention is restricted to thin anisotropic foils, therefore models in plane stress condition only are examined. The anisotropic models
themselves contain rather big number of parameters to be calibrated, therefore the mechanical characterization becomes even more
difficult when damage is considered. In the paper the numerical implementations of enhanced anisotropic models into the commercial
FE software is presented followed by the description of novel inverse procedure for parameter identification based on biaxial tests,
experiment simulations and Digital Image Correlation (DIC).
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1. Introduction

The free-foils, despite they diverse internal structures and
thicknesses, are more and more frequently employed in vari-
ous industries. Fiber metal laminates consist of aluminum layers
bonded by fiber reinforced pre-preg layer employed in an aircraft
design; layered structures composed of different sheets of materi-
als used in the food packaging industries; carbon fiber-reinforced
composites exploited in passive protection of structural elements
under static and dynamic loads, to list just a few.

Usually such composites and layered materials have different
mechanical behavior when loaded in different directions. This
behavior is regarded as anisotropy or, more precise, as orthotropy
and can be modeled by various elastic-plastic constitutive mod-
els. Here, the popular Hill model [1] and its generalized ver-
sion (Hoffman model) [2] are investigated, followed by Tsai-Wu
model [3].

The work hardening rule employed in the above listed models
is first chosen to be isotropic (just one hardening internal variable
controls the hardening). Later, the anisotropic hardening is con-
sidered [4]: each hardening parameter describes the behavior of
its corresponding equivalent stress component independently. In
order to capture softening and fracture processes in thin free-foils
the local (regularized) and non-local (integral type) isotropic [5]
(and orthotropic) damage is additionally investigated.

Mechanical calibration of such complicated models is not
an easy task and often requires sophisticated experimental tech-
niques to be employed. Therefore the experimental technique
which combines biaxial testing and Digital Image Correlation
(DIC) for displacement measurements is presented here for ma-
terial parameter identification.

2. Anisotropic elasto-plasticity

The elastic behavior of anisotropic materials is often de-
scribed by the linear elasticity law defined by:

σ̇ij = Ce
ijklε̇

e
kl (1)

where Ce
ijkl is the fourth-order elasticity tensor, which accounts

for anisotropic effects ranging from transversal isotropy and or-
thotropy to general anisotropy with 21 elastic constants. The ba-

sic assumption in elasto-plasticity using small deformation theory
is that the total Cauchy strain-rate tensor, ε̇ij , can be decomposed
into a sum of an elastic and a plastic part, i.e.

ε̇ij = ε̇eij + ε̇pij (2)

in which the plastic strain-rate tensor is determined from the as-
sociated plastic flow rule or the normality law defined by:

ε̇pij = λ̇
∂f

∂σij
(3)

where σij is the Cauchy stress tensor, λ̇ is a plastic multiplier and
f is the yield function which can be defined under the isotropic
work-hardening assumption by:

f = σeq (σij) − σ̄(εpeq) ≤ 0 (4)

where σeq denotes a scalar measure of the effective stress, σ̄ is a
scalar hardening function and εpeq is an equivalent plastic strain,
which in rate form reads: ε̇peq = (ε̇pij ε̇

p
ij)

1/2. The effective stress
expresses the severity of the present stress state, while the hard-
ening function monitors the present location of the yield surface.
The hardening function may consist of a single constant (elas-
tic perfectly plastic materials) or a function of internal variables
(hardening materials). The criteria for plastic deformation to oc-
cur in hardening materials is that f = 0 and λ̇ > 0 are satisfied
simultaneously.

2.1. The Hill model

The Hill criterion has been introduced as an orthotropic ex-
tension of the standard Huber-Mises-Henky (HMH) criterion in
order to model the anisotropy often found in formed steel. With
σij denoting the stress tensor components on an orthonormal ba-
sis {e1, e2, e3} whose vectors coincide with the principal axes of
plastic orthotropy. The yield function associated with the Hill cri-
terion is shown in the Table 1, where σ̄ is the relative yield stress
(a non-dimensional scalar) which defines the size (state of hard-
ening) of the yield surface in the stress space. The constants Fi

are the functions of σ0
ij which are the generally distinct (but equal

in tension and compression) normal and shear yield stresses. The
initial state of the material is assumed when σ̄(εpeq = 0) = 1.
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Table 1: Anisotropic yield functions
Name Yield function

Hill f(σ, εpeq) = F1 (σ11 − σ22)2 + F2σ
2
22 + F3σ

2
11 + F4σ

2
12 − [σ̄(εpeq)]2

Hoffman f(σ, εpeq) = C1 (σ11 − σ22)2 + C2σ
2
22 + C3σ

2
11 + C4σ

2
12 + C5σ11 + C6σ22 − [σ̄(εpeq)]2

Tsai-Wu f(σ, εpeq) = F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + F44σ

2
12 + 2F12σ1σ2 − [σ̄(εpeq)]2

Since general straining of an initially orthotropic material is
usually expected to change the yield stresses in different direc-
tions by different amounts, or even lead to loss of orthotropy, the
model resulting from the above assumptions provides only a first
approximation to the phenomenon of hardening.

2.2. Generalized Hill model (Hoffman model)

For many materials (e.g. composite, worked metals, paper
and paperboards) a marked difference is observed between yield
stress levels in tension and compression (the Bauschinger effect).
In order to model such effects in orthotropic materials, Hoffman
proposed an extension to the Hill criterion described by the yield
function depicted in the Tab. 1, where Ci, analogous to that of
the Hill criterion) are defined as functions of σt0

ij and σc0
ij , with

t – tension, c – compression.
The effect of (isotropic) hardening can also be incorporated

into the Hoffman criterion by assuming σ̄(εpeq) to be a function
of the accumulated plastic strain.

2.3. Anisotropic hardening

In the case of anisotropic hardening of the above models, the
individual yield values σ0

ij do not remain constant but depend on
a corresponding hardening parameter σy

ij (κij). To avoid a cou-
pling between an isotropic type of hardening and an anisotropic
type the equivalent stress σ̄ in Eq. (4) and in Tab. 1 remains con-
stant. Here it is assumed that the equivalent stress σ̄ is equal to the
virgin yield strength of the material in the first material direction:
σ̄ = σ0

11 (κ11 = 0).

3. Damage

In order to describe the loss of material integrity due to prop-
agation and coalescence of micro-cracks which leads to degrada-
tion of material stiffness the continuum damage is employed here,
where the relation between the stress and elastic strain reads:

σij = (1 − ω)Ce
ijklε

e
kl (5)

with ω being a damage parameter (scalar in isotropic damage)
ranging from 0 (virgin material) to 1 (completely damage mate-
rial). The two mesh-independent implementations are presented
herein as follow: (i) model with a fracture energy regularization
technique and (ii) non-local integral type of damage model [5],
by weighted averaging of the certain variable over the spatial
neighborhood of each point of interest. In the nonlocal damage
model adopted here, non-locality enters the constitutive equations
through the definition of non-local scalar measure of equivalent
plastic strain:

ε̃peq (x) =

∫
Ω
ψ (y,x) εpeq(y)dΩ(y)∫

Ω
ψ (y,x) dΩ(y)

(6)

where the ψ is chosen here to be homogeneous and isotropic
Gaussian weight function:

ψ(ρ) =
1

2πl2
exp

(
− ρ2

2l2

)
(7)

with ρ being the distance between the points y and x and l the
material parameter called ”length scale”.

In such non-local formulation the damage parameter is the
function of non-local measure of equivalent plastic strain over
certain domain: ω = ω(ε̃peq). Further enhancements of the dam-
age model investigated here are as follow: (i) an orthotropic dam-
age propagation (no longer scalar ω but tensor w controls damage
in the material through nonlocal internal variable κ̃ij); (ii) strain-
rate dependence of damage evolution, namely:

w = wij (κ̃ij , ε̇ij) . (8)

4. Parameter identification

The minimization algorithm employed here for the parame-
ters characterization is a first-order, deterministic, butch (not se-
quential) Trust Region Algorithm (TRA). The discrepancy be-
tween experimental and numerical data is minimized, in least-
square sense, by an incremental updates of the sought constants
embedded in a finite element (FE) model.

The Hill and the Hoffman model benefit from a relatively
simple identification of material parameters (usually a set of uni-
axial tests performed in the directions of orthotropy is sufficient
for model characterization). In contrast, the Tsai-Wu plasticity
model (Tab. 1) suffers from a strong sensitivity of the measured
material parameters and the calibration requires additional biaxial
test to be utilized.

Identification of the parameters in the anisotropic elasto-
plastic models with anisotropic hardening coupled to damage
cannot be done by making use of the simple uniaxial tests any-
more. In those cases the novel experimental procedure, namely
biaxial tests combined with DIC measurements [6] are necessary
in order to successfully identify the model parameters. This ex-
perimental tools allows to calibrate the above listed models effi-
ciently and robust with just few experiments, although the num-
ber of the material constants to be characterized usually exceed
twenty.
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