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Abstract

Model reduction techniques generate low-dimensional models to parametrize PDEs in order to allow for efficient evaluation of highly
non-linear problems in many-query and real-time context. Computing time in these methods is divided into a time consuming ‘off-line’
phase needed to ‘train’ a surrogate model, which is further used in ‘on-line’ phase providing accurate results in a much faster way.
The accuracy of these methods is strictly connected to the number of points in which the system response is previously computed
and on their distribution in a parameter space. For a given number of analysis decided to be ‘invested’ for the design of surrogate
model, the accuracy can be further improved by the adequate distribution of them in a parameter space. Two methods of robust samples
distribution are proposed here. A first method is based on interactive nodes aimed to optimize the distribution of them. A second is
based on an optimal Latin hypercube design. Both presented methods are flexible with respect to the number of nodes involved and
they can provide uniform distribution for any arbitrary number of them. Furthermore, they allow also for taking into account different
importance of divers parameters.
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1. Introduction

Inverse analysis and parametric studies require a large num-
ber of time consuming analyses that differ between each other
just by a few parameters which are changing from one simulation
to another. For these purposes recently become popular the use
of model reduction techniques aimed to design low-order mod-
els capable of evaluating responses of complex systems within
drastically reduced computing time. Survey of different applica-
tions of model reduction techniques based on Proper Orthogonal
Decomposition (POD) is given in [1]. Similar methods based on
Proper Generalized Decomposition (PGD) are developed and ap-
plied in computational fluid dynamics and in computational frac-
ture mechanics (see e.g. [2, 3]).

All of these methods have in common computational strategy
which consist in an a priori time consuming computation done
once-for-all, which precedes a routine repeated computation that
makes the use of previously generated results. By increasing the
number of simulations done as a part of a preliminary ‘training’ it
is obvious that the error of surrogate model will be decreased, but
for any given number of them, the optimization of error is strictly
connected to their distribution.

2. Interactive nodes method

A method presented in this section is based on dynamic simu-
lation of interactive nodes of evaluation points which leads to the
designs that are uniformly filling the space. Method starts from a
random distribution of nodes, attributing a unitary mass to each of
them and introducing repulsive forces which are inversely propor-
tional to the distances between them. Apart of these forces, also a
damping force needs to be added in order to make the nodes even-
tually resting in a steady state, otherwise they would continue to
oscillate about their equilibrium positions. As a second phase, an
explicit dynamic simulation is performed and a stable solution is

found that corresponds to the uniform distribution of nodes in a
parameter space.

The proposed method can be easily extended to the case with
different priorities of diverse parameters on which the system de-
pends, which is a frequent case in modeling diverse phenom-
ena using model reduction techniques. This is achieved simply
by stretching the space along those directions for which there
is a larger importance of the parameters, followed by a subse-
quent mapping into original space after the equilibrium solution
is found.

3. Optimal Latin hypercube design method

Another efficient method of space filling is based on Latin
hypercube design (LHD) proposed by McKay et al. [4] and Iman
and Conover [5]. The LHD with np points is constructed in such
a way that each of the nv variables is divided into np equal levels
and that there is only one point (or sample) at each level. Usually
a random procedure is used first to determine the point locations
and later the optimization is performed in order to improve points
distribution in the parameter space. This, however, requires many
iterations (i.e. is computationally very costly) especially when
the dimensionality of parameters space is high or the number of
a-priori selected samples (points) is larger than few thousands.

In the literature many efficient methods for optimization of
LHD based on e.g. coordinate exchange algorithms, enhanced
stochastic evolutionary algorithm or columnwise-pairwise and
genetic algorithms can be found (see details in [6]). The objec-
tive of the optimization is usually the minimization of potential
energy or maximization of a minimal distance between all points.
Recently very efficient algorithm was proposed [6] which does
not use any optimization technique but a systematic translational
propagation of points arranged in particular seed design. The al-
gorithm allows to design a high dimensional, multi-points Latin
hypercube within a fraction of the second.
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4. Examples

In order to illustrate a space filling properties of different al-
gorithms a simple example using a distribution of 90 samples in
2-dimensional space is shown in Fig.1.

a) b)

c) d)

Figure 1: Distribution of 90 points in 2-dimensional space by:
(a) random uniform generator, (b) Latin hypercube design, (c)
interactive nodes algorithm, (d) topology propagation Latin hy-
percube design.

The visual inspection of space filling properties of above
listed algorithms (shown in Fig. 1a–d) gives a qualitative eval-
uation of their ability to create an optimal design. It is visible that
both Topology Propagation Latin Hypercube Design (TPLHD)
and Interactive Nodes (IntNod) algorithms create well-distributed
grids, while LHD and random uniform generator perform rather
poor. We can also compare above algorithms in a quantitative
way by measuring their performance using formula:

φp =

np−1∑
i=1

np∑
j=i+1

d−p
ij

1/p

(1)

where p is a positive integer, np is the number of points in the
design, and dij is the inter-point distance between all point pairs
in the design. The general inter-point distance between any point
pair xi and xj can be expressed as follows:

dij = d (xi,xj) =

[
nv∑
k=1

|xik − xjk|t
]1/t

(2)

Here p = 50 and t = 1 are used. Minimizing the value of per-
formance measure φp leads to the maximization of point-to-point
distance in the design. The values of φp of selected algorithms
are presented in the Tab. 1. The regular grid used as reference in
Tab. 1 consists of 10× 9 points.

Table 1: The performance measurement of 6 methods of points
distribution in 2-dimensional parameter space

RAND LHD IntNod TPLHD regular grid

48.56 31.27 9.37 10.83 9.83

In the second example a design in 6-dimensional parame-
ters space with 7,000 samples is considered. The model reduc-
tion is performed by POD-ANN system where Proper Orthog-
onal Decomposition truncates the 9-dimensional input vector to
just 4-dimensional and the General Regression Artificial Neural
Network is used for model approximation. Surrogate is trained
both on the samples generate by IntNod and TPLHD algorithms
and later tested on randomly generated 6,000 points. The perfor-
mance is presented in Fig. 2, where the reconstruction error of
one over 6 parameters is shown.
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Figure 2: The approximation error of a design in 6-dimensional
parameters space with 7,000 samples

5. Conclusions

The space filling property in the design of sampling points
distribution plays a crucial role in model reduction performance.
The better distribution in the parameters space the better approx-
imation of the model. If the space dimensionality is relatively
small and there is no limitation of number of the grid points the
regular grid is the easiest and the fastest way to distribute points
in the space. If, however, the space has for example 9 dimensions
then a regular grid with only 3 levels for each parameter requires
39 = 19, 683 sampling points. In such situation it is desirable
to use other sampling methods (e.g. TPLHD or IntNod) with
smaller number of sampling points but with similar performance.
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