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Reliable mechanical characterization of layered pavement structures
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e-mail: tomasz.garbowski@put.poznan.pl

Abstract

In order to obtain the geometrical and mechanical properties of an axisymmetric layered system a numerical high performance model is
constructed built on the data provided by the falling-weight-deflectometer (FWD). This apparatus allows for fast non-destructive testing
and consists of a falling mass hitting the pavement and a set of sensors collecting the vertical surface oscillations at different distances.
The objective of this research is at first to construct a forward model for simulating wave propagation into a layered media. By adopting
the spectral element technique only one element per layer is required and computational efficiency is guaranteed, especially when
compared to standard dynamic FEM procedures. The main numerical efforts at this stage are the attainment of the dynamic complex
stiffness matrix for each discrete frequency and wave number and the solution of the related linear system. Subsequently an inverse
method based on the framework of the forward model is proposed for the calculation of the unknown parameters. The procedure is
now concerned with the minimization of the objective function which quantifies the difference between computed quantities and their
measured counterpart. The solution of the nonlinear system of equations is searched through iterative methods and finally results of
different algorithms are compared.
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1. Introduction

Pavement consists of few layers of asphalt, placed on granular
sub-base and base, all of them are specified by their thickness and
elastic properties. However the initial properties are gradually
changing during an extensive overloading of the road structure,
which enforces frequent in-situ examinations of the deteriorated
pavement characteristics. This is mainly done by using nonde-
structive tests enhanced by the numerical or analytical models
and inverse analysis.
Mechanical identification of layered pavement structures is an ac-
tual and an important problem which attracts many researchers
around the world. In the literature one can find many approaches
based on an inverse procedure combined with a dynamic test (e.g.
falling-weight-deflectometer - FWD) and analytical or numerical
models. In most cases the static analysis are used, which creates
an obvious divergence between a purely dynamic response of the
real structure and its numerical quasi-static model. This prob-
lem was partially solved by introducing the filtered (i.e., zero-
frequency) force and deflection values [2] into the inverse proce-
dure. Other solutions usually base on dynamic FE models, which
unfortunately are very costly and therefore impractical in real life
applications.

2. Problem formulation

The proposed here procedure use a spectral element method
(SEM) instead of dynamic FE models. The main advantage, be-
side a substantial decrease of the computational time, is a sig-
nificant increase of an experimental data to be incorporated into
the inverse analysis. This is mainly because one can now freely
sample the dynamic response not only in space but also in time.

Moreover the bigger amount of data creates a great possibility to
regularized usually ill-posed inverse procedure.
In the following subsections the forward model based on SEM
is briefly described followed by the short introduction to inverse
analysis and concluding remarks.

2.1. Wave equations

A vertical impulse load acting on a homogeneous isotropic half
space generates axisymmetric perturbations. Therefore by adopt-
ing a cylindrical reference system it is possible to combine
Navier’s equations and the Helmholtz potential decomposition in
order to obtain the wave motion equations. Denoting the poten-
tials (φ and ψ) and the vertical and radial coordinates (z and r),
the governing differential equation reads:
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while the displacement field respectively in radial and vertical
downward direction is:
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A way of solving the differential equations (1-2) is through
Fourier transform. Shifting from time domain to frequency do-
main reduces the problem to Bessel equations: its solution is the
Bessel’s function J0 . In order to discretize the domain it is nec-
essary to impose zero amplitude at distance r = R far enough
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from the origin.

J0(kR) = 0 (5)

By choosing the constants (wavenumbers) as km = αm/R,
where αm represents the m-th root of J0, the solution of equa-
tion (5) is achieved. The potentials in the frequency domain are
consequently defined as:

φ̂mn(r, z) = Amne
−ikpzmnzJ0(kmr) (6)

ψ̂mn(r, z) = Bmne
−ikszmnzJ1(kmr) (7)
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being kpzmn the wavenumber in vertical direction, kszmn the
wavenumber in radial direction,Amn andBmn constants defined
by boundary conditions, J1 the Bessel’s function of the first kind.

2.2. Discrete spectral solution

Thanks to the linearity and homogeneity of the governing equa-
tions it is possible to use the principle of superposition. This
means that by double summation over M wavenumbers and N
angular frequencies ωn one can reconstruct the whole vibration
system that vanishes at r = R.
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Summation over N can be done by means of FFT. At this point
it is straightforward to build the stiffness matrix for the layer el-
ements from the nodal displacement obtained by (4) and the ap-
plied boundary tractions. The process needs to be done for every
wavenumber and every frequency while the global stiffness ma-
trix is assembled in the same way as in the finite element method.
The final result is the following:
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ûmn(z, km, ωn)F̂mJ1(kmr)F̂ne
iωnt

w(r, z, t) =
∑
n

∑
m
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being umn and wmn the displacements for a unit load condition,
while Fm and Fn represent the Fourier-Bessel spatial coefficients
and fast Fourier time coefficients of the load.

2.3. Inverse analysis

In order to bring the details of the proposed procedure one needs
to discuss also the general framework of inverse analysis and min-
imization algorithm. Herein the brief explanation of main fea-
tures of the inverse procedure followed by a detailed elucidation
of implemented minimization algorithms is presented.
Back-calculation analysis with a particular application to consti-
tutive model calibration is a tool widely used by many researchers
(see e.g. [1, 5, 6]). In general it merges the numerically computed
UNUM and experimentally determined UEXP measurable quantities
for a discrepancy minimization. A vector of residua R in time t
can be constructed in the following way:

Rt(x) = Ut
EXP −Ut

NUM(x). (11)

This measures the differences between the aforementioned mea-
surable quantities. By adjusting the constitutive parameters (en-
capsulated in the vector x) embedded in the numerical model,
which in turn mimic the experimental setup, an iterative con-
vergence towards the required solution can be achieved. The
minimization of the objective function ω (within the least square
frame) takes the form:
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and is usually updated through the use of first-order (gradient-
based) or zero-order (gradient-less) algorithms. Among the many
first-order procedures that are based on either the Gauss-Newton
or the steepest descent direction in a nonlinear least square meth-
ods, the Trust Region Algorithm (TRA) seems the most effec-
tive. The TRA uses a simple idea, similar to that in Levenberg-
Marquardt (LM) algorithm (see e.g. [7]), which performs each
new step in a direction combining the Gauss-Newton and steep-
est descent directions.
Here however another great tool is selected for an automatic up-
date of the model parameters prediction, which is based on Bayes
principles, namely Kalman filter. By making use of such algo-
rithm one achieves not only the parameter estimates but also their
uncertainty.

3. Concluding remarks

Herein a procedure based on the discrete spectral solution has
been implemented and its verification has been obtained by com-
paring the results with those obtained in [3, 4]. Special considera-
tion went into performance since code efficiency is crucial for in-
verse analysis algorithms. Therefore static correction technique,
interpolation method of FRF and high performing libraries (LA-
PACK) where used. Calculations were conducted over an Intel
Pentium T2330 1.60 GHz and 2 GB of RAM memory and code
has proven to be efficient enough: about 0.12s for each forward
computation, which is few hundred times faster then FE forward
model. Additionally by adopting the Kalman filter the overall
identification procedure gives a realistic perspective for very fast
and robust engineering application.
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