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ABSTRACT: Non-destructive testing is often used in pavement engineering to determine the structural status
of pavements. One of the most used devices in this field is the Falling Weight Deflectometer (FWD), which pro-
duces a set of recorded surface deflections later used for parameter identification purposes. It is then important
to create a proper model to interpret FWD data. In literature many authors have proposed different approaches
for analysing the behavior of pavement structures. Some of them are simpler, other are more rigorous. Most
commercial programs employ quasi-static analyses due to its simplicity and performance. This choice, however,
may be in conflict with the purely dynamic response of the real structure. A better alternative might contemplate
dynamic finite element models, which unfortunately are very costly and therefore impractical in real life appli-
cations. In this work however, the dynamic behavior of the system is described through the Spectral Element
Method (SEM). Its high-performance and precision represent a valuable element in back-analysis. Besides, the
introduction of different minimization algorithms (Powell’s method, Levenberg-Marquardt algorithm, Extended
Kalman Filter) combined with multiple starting points result in a more confident and stable solution. In conclu-
sion, the study reports a back-calculation example for a 3-layered pavement system. The intention is to show
the importance of lower frequencies and the influence of resonance phenomena in system identification.

1 INTRODUCTION

1.1 Maintenance and rehabilitation

Deterioration of the pavement is an inevitable process
and takes place from the day after construction. In
such scenario, it is mandatory to schedule a precise
maintenance plan in order to ensure the full function-
ality of the road during its design life (figure 1). It

Figure 1: Pavement life management

is thus imperative to intervene in the right moment,
when rehabilitation can still be conducted with lower

resources. A posterior operation, dealing with struc-
ture in worse conditions, might require a different
amount of finances. Fortunately, with just a limited
quantity of new materials and by reemploying the ex-
isting ones, flexible pavements may be easily recy-
cled. Nevertheless, it is still an expensive operation
and, in order to plan a proper rehabilitation strategy
for the whole network, it is necessary to regularly
monitor the status of the roads. Such process is called
pavement management and contemplates the use of
specific devices for assessing the conditions of the
structure by means of nondestructive testing and eval-
uation (NDT and NDE) methods. A typical machine
used for such purpose is, in fact, the Falling Weight
Deflectometer (FWD) (9, 10).

1.2 The Falling Weight Deflectometer

The FWD represents a precious instrument for the
structural evaluation of existing flexible pavements:
it produces fast and easy-repeatable tests. The ba-
sic concept behind the FWD is that the magnitude
of the surface deflections caused by a given load are



indirectly indicating the structural health of the sys-
tem. The mechanism attempts, in fact, to replicate
the effect of single heavy moving wheel acting on
the pavement by applying a dynamic load. Such im-
pulse is produced by a considerable weight and deliv-
ered to the surface by a circular plate (typically 300
mm in diameter). A rubber base at the bottom per-
mits a uniform load pressure. The instrument is also
equipped with a load-measuring cell that accounts
for the exact pressure at each time interval. Several
geophones (7 or 9) are located at different distances
from the loading device and are responsible for rigor-
ous displacement recording. Indeed, the sensor pre-
cision ranges between ±1.0µm (or even ±0.1µm
): accurate recording is imperative when small vari-
ations in the deflection have considerable influence
on the structural response. Such deflections are then
employed in a back-calculation procedure in order
to assess the pavement mechanical properties. Typ-
ical tests contemplate the use of four different load
levels (the entire procedure is normally completed in
less than two minutes) and they are conducted every
150 meters, in order to ascertain unexpected shifts
of soil and pavement properties. FWD tests are of-
ten preferred over destructive methods because they
are much more rapid and do not entail the removal of
pavement materials. This is a great advantage since
the sought information may be available soon after
the test is performed, thus saving expensive labora-
tory tests.

2 SPECTRAL BASED FORWARD MODEL

The proposed here procedure uses a spectral element
method (SEM) instead of dynamic FE models. The
main advantage, beside a substantial decrease of the
computational time, is a significant increase of an ex-
perimental data to be incorporated into the inverse
analysis. This is mainly because one can now freely
sample the dynamic response not only in space but
also in time. Moreover, since the spectral element
technique makes use of the exact solution of the wave
problem, a very high level of precision is guaranteed.

2.1 Governing differential equations

A vertical impulse load acting on a homogeneous
isotropic half-space generates axisymmetric perturba-
tions. Therefore, by adopting a cylindrical reference
system, it is possible to exploit Navier’s equations and
the Helmholtz potential decomposition in order to ob-
tain the wave motion equations. Denoting the poten-
tials (φ and ψ) and the vertical and radial coordinates

(z and r), the governing differential equation reads:
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while the displacement field respectively in radial and
vertical downward direction is:
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A way of solving the differential equations (1) is
through Fourier transform. The shifting from time do-
main to frequency domain reduces the equations to
simple Bessel equations: its solution is the Bessel’s
function J0 . In order to discretize the domain it is
necessary to impose zero amplitude at distance r = R
far enough from the origin.

J0(kR) = 0 (4)

By choosing the constants (wavenumbers) as km =
αm/R, where αm represents the m-th root of J0, the
solution of equation (4) is achieved. The potentials in
the frequency domain are consequently defined as:

φ̂mn(r, z) = Amne
−ikpzmnzJ0(kmr)

ψ̂mn(r, z) = Bmne
−ikszmnzJ1(kmr)

(5)
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being kpzmn the wavenumber in vertical direction,
kszmn the wavenumber in radial direction, Amn and
Bmn constants defined by boundary conditions, J1 the
Bessel’s function of the first kind.

2.2 Discrete spectral solution

Thanks to the linearity and homogeneity of the gov-
erning equations it is possible to use the principle of
superposition. This means that by double summation
over M wavenumbers and N angular frequencies ωn

one can reconstruct the entire oscillating system.
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At this point, it is straightforward to build the stiff-
ness matrix for the layer elements from the nodal
displacement obtained by (3) and the applied bound-
ary tractions. The process needs to be done for ev-
ery wavenumber and every frequency while the global
stiffness matrix is assembled in the same way as in the
finite element method. The final displacement field is
the following:

u(r, z, t) =
∑
n

∑
m

ûmn(z, km, ωn)F̂mJ1(kmr)F̂ne
iωnt
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being ûmn and ŵmn the displacements for a unit load
condition, while Fm and Fn represent the Fourier-
Bessel spatial coefficients and fast Fourier time coef-
ficients of the load. Differently from FEM, however,
thanks to the exactness of the found solution, one ele-
ment per layer is sufficient to represent adequately the
behavior of the system. More details can be found in
(1, 2)

3 PARAMETER IDENTIFICATION STUDY

3.1 Back-calculation analysis

Back-calculation analysis with a particular applica-
tion to constitutive model calibration is a tool widely
used by many researchers (see e.g. (6, 4, 5, 3, 7)). In
general, it involves the minimization of the discrep-
ancy between the numerically computed UNUM and
measurable quantities UEXP. A vector of residuals R
in frequency domain f can be constructed in the fol-
lowing way:

Rf (x) = Uf
EXP − Uf

NUM(x) (9)

By adjusting the constitutive parameters (encapsu-
lated in the vector x) embedded in the numerical
model, which in turn mimic the experimental setup,
an iterative convergence towards the required solution
can be achieved. The minimization of the objective
function ω (within the least square frame) takes the
form:

minx ω(x)f =
∥∥Rf (x)

∥∥2
2

(10)

and it is updated through the use of gradient-based
algorithms (Levenberg-Marquardt (LM), Extended
Kalman FIlter (EKF)) and gradient-less algorithms
(Powell (P)). More details can be found in (8). For-
tunately, the profound differences between each of
these optimization techniques constitute the backbone
of the entire program. Diverse solutions may be found
by each algorithm and, among those, only the one that
shows the lowest error norm is selected.

3.2 Multistart approach

It is known that optimization problems may be more
or less dependent on the user provided initial guesses.
This is due to the very nature of the objective function
which is in general non-convex: the algorithm might
get trapped inside a local minimum and fail to reach
the optimum. There is not much to do on the algo-
rithm side. However, as the spectral implementation
is relatively not demanding, the program can afford
to contemplate the coexistence of multiple initial val-
ues. By selecting the best estimate related to the low-
est error norm, it is possible to eradicate the depen-
dency on the starting guess. Thus, few more seconds
of computations can produce a massive enhancement
of code stability. Figure 2 documents the improve-
ment achieved.

Figure 2: Success rate for different amounts of starting points

3.3 Example: 3-layered pavement structure with
rigid subbase on shallow bedrock

The current study considers the presence of a stabi-
lized subbase in a 3-layered system (the properties
are indicated in table 3.3). This scenario represents
an important practical case because a stiffer layer is
typically required for pavements constructed above
weak soil. Moreover, it is known that when the stiff-
ness ratio between layers is significant, some back-
calculation instabilities may arise. The here presented
study is based on computer-generated deflection data.

layer E [MPa] h [cm] ν ρ [Kg/m3]

1 2000 15 0.35 2300

2 5000 25 0.35 2000

3 25 430 0.35 1500

Table 1: Material properties.

As speculated the program strives to find a correct so-
lution (represented by the dashed line). It can be no-
ticed, however, that the lower frequencies (0-10Hz)
are able to correctly find the stiffness values for all
layers. Analyzing the following frequency range (10-
20Hz), one can notice a sudden dispersion peak which



Figure 3: Dispersion representation of the first layer elastic mod-
ulus.

Figure 4: Dispersion representation of the second layer elastic
modulus.

Figure 5: Dispersion representation of the third layer elastic
modulus.

leads to highly incorrect results. This behavior is
caused by resonance phenomena due to the shallow
bedrock. Therefore, in this interval, found parameters
are not to be trusted. In addition, this example shows
that stiffer layers are the ones which are better identi-
fied, regardless of the depth of the layer.

4 CONCLUSIONS

Herein a procedure based on the discrete spectral so-
lution has been implemented and its verification has
been properly obtained. One of the most powerful
features of SEM is the double summation approach,
which avoids the typical complications rising with nu-
merical integration between zero and infinity. Also,
it was discovered that one finite spectral element is
representative of the entire layer. This results in a dra-

matic reduction of the model complexity if compared,
for instance, to FEM. Therefore, it is possible to assert
that the spectral element method represents a robust
and highly efficient tool for recreating the dynamic
nature of the FWD test. The association of the nu-
merical model with three distinct minimization algo-
rithms yielded to an exhaustive back-calculation pro-
gram. The program, in fact, selects only the solution
with the lowest error norm, thus ensuring a better esti-
mate. It is known, however, that search techniques are
strongly conditioned by the choice of the initial guess.
Here, a simple consideration, contemplating the coex-
istence of multiple random starting points, was able to
dramatically improve the stability of the code. Later,
a 3-layered example with rigid subbase and shallow
bedrock was studied. It was noticed that lower fre-
quencies usually permit more successful parameter
identification. Besides, great prudence is required in
the eventuality of shallow bedrock (or seasonal stiff
layers). Resonance phenomena may in fact contami-
nate measurement and conduce to erroneous results.
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