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Abstract: Biorefining and biorefineries are the future of industry and energy. It is still a long way to
complete its implementation, but small biorefineries focused mainly on the production of fuels and
energy are more and more frequent in rural areas and large areas located near big cities in which, in
addition to fuels and energy, various organic substances of high market value are also produced. In
order to optimize biogas production and to control methane fermentation processes, fast and accurate
identification of carboxylic acid concentrations, including propionic acid as a precursor to acetic acid,
is needed. In this study, a process quality control method was developed to evaluate the propionic
acid content of an aqueous solution from the fermentation mass. The proposed methodology is
based on near infrared spectroscopy with multivariate analysis and stochastic metamodeling with a
denoising procedure based on proper orthogonal decomposition (POD). The proposed methodology
uses the Bayesian theory, which provides additional information on the magnitude of the correlation
between state and control variables. The calibration model was, therefore, constructed by using
Gaussian Processes (GP) to predict propionic acid content in the aqueous solution using an NIR-
Vis spectrophotometer. The design of the calibration model was based on absorbance spectra and
calculation data from selected wavelength ranges from 305 nm to 2210 nm. Measurement data were
first denoised and truncated to build a fast and reliable metamodel for precise identification of the
acid content of an aqueous solution at a concentration from 0 to 5.66%. The mean estimation error
generated by the metamodel does not exceed 0.7%.

Keywords: biogas; renewable energy source; spectroscopy; proper orthogonal decomposition;
Gaussian Processes; propionic acid

1. Introduction

Research on biofuel production processes, including the fermentation process with
the release of biogas, and research on oxygen stabilization processes indicate the important
role of controlling the biomass conversion processes in relation to the broadly understood
process efficiency [1,2]. The effective process of mineralization in anaerobic conditions is
possible thanks to the protection of key technological parameters, including the chemical
and biological properties of food substrates [3]. A good condition of a bacterial deposit
depends, among others, on the control of parameters such as the following: temperature;
pH; oxygen content; moisture content; intensity and quality of the mixing process; nutrient
content; digestibility of polysaccharides contained in row fiber; carbon and nitrogen ratio;
and the presence of key macronutrients [4,5]. The more difficult food digestibility is for
bacterial deposits, the more important the process control issue is. In such cases, the
inspection process should be intensified and streamlined [6,7]. The main element of the
regulation and control mechanism of the methane fermentation process is to maintain the
dynamics of the transformation of nutrients in key stages [8].

In the fermentation process with biogas production, the acidogenesis phase is distin-
guished during which the hydrolysis products produce carboxylic acids, which mainly
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include valerian, formic and propionic acids [9]. Subsequently, compounds metabolized
by bacteria (heterotrophy) in the process of acetogenesis cause the release of acetate [10].
The concentration of acetic acid in the process of oxygen stabilization and the level of acid
buffering is an important control parameter with a predictive function in terms of auto-
inhibition effects [9–12]. Thus, the level of propionic acid, thus, has a precursor function
to the parameter of acetic acid concentration and the associated level of total inorganic
carbon [7–13]. Thanks to the development of titration methods, it is possible to quantify the
concentration of carboxylic acids expressed in the acetate’s equivalent [8,14]. In addition to
the methods dedicated to the detection of carboxylic acids (acetic acid and propionic acid)
and based on chromatography, chemometric methods that use mathematical analysis of
spectral spectra are also rapidly developing [15]. In this case, the advantages are consistent
with titration methods but offer an extended possibility of qualitative and quantitative
detection and logistical and economic improvements [16].

The post-fermentation or aerobic decomposition effluent contains characteristic frac-
tions of products of chemical and biological transformations dissolved in moisture. These
substances can be separated by classical methods and can be identified and quantified.
Classical methods indicate that a liquid and clear filtrate can contain representative in-
formation for predicting propionic acid content in an aqueous solution [17–20]. Rapid
detection of the precursor for the subsequent processes of acetogenesis and methanogenesis
can be achieved by applying spectroscopic methods with the possibility of fast and precise
response [21–29]. However, this requires prior construction and use of a reliable and fast
metamodel for in situ testing.

Models for quick and precise estimation of the sought parameters (here, propionic
acid concentration) are usually built on the basis of artificial neural networks or other soft
computational methods. In the case of meta-models, all efforts to prepare and correlate
them are transferred to the experimental and training phases. These models were tuned
using a priori generated training pairs, namely measurements (input data) and targets (re-
sponses). The use of absorbance spectra as training data, especially over a wide wavelength
range, involves a large amount of input data. Unfortunately, meta-models based on large
amounts of noisy and often correlated data are not very effective. Therefore, input data
should be first denoised and, if possible, also reduced to the smallest possible dimension.
Reducing and denoising input measurement data can be performed, for example, by using
methods based on principal component analysis (PCA).

The main idea of PCA is to reduce the multivariate dataset composed of a large
number of correlated variables, while maintaining as much variation as possible in the
dataset. In order to achieve the intended goal, a given set should be transformed into a
new space of variables, called principal components (PC), which in the new system are no
longer correlated. Additionally, they are ordered so that the first few components show
the greatest variability present in all original variables. After determining all PCs, it is
possible to reduce the dimensionality of the original variable space by selecting only the
first few components, while maintaining a very high accuracy of approximation. In the
literature, PCA is also known as singular value decomposition (SVD) or proper orthogonal
decomposition (POD).

The original development (although still debatable) of proper orthogonal decomposi-
tion as a tool for graphical analysis was presented exactly 120 years ago by Pearson [30].
The method appears to have been independently developed over time in different research
centers by different authors under different names. For example, Hotelling in the 1930s
developed a method for processing statistical data and probability theory known as the
Hotelling transformation [31]. A decade later, two scientists Karhunen [32] and Loeve [33]
independently developed a theory of optimal expansions of continuous-time stochastic
processes, now known as Karhunen–Loeve decomposition. Finally, Lumley [34] derived
the idea of POD from independent investigations not only by Karhunen and Loeve but
also in the mid-twentieth century by, e.g., Kosambi, Pougachev or Obukhov. The practical
application of POD can be found, e.g., in [35–37].
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Once experimental data are properly prepared by using PCA or POD, the only thing
left to conduct is to select the appropriate metamodel. Ideally, finding a method that
requires the smallest possible number of ‘training samples’ and at the same time is precise
and robust is ideal. A surrogate based on Gaussian Processes (GP) meets both of the
above-mentioned requirements [38–40]. It allows obtaining very precise results when the
number of training examples is limited. In addition, GP allows obtaining not only an
approximation of the average value of the solution sought but also its standard deviation,
which allows for automatic and systematic improvements of the model. It is well known
that a weak approximation of the model usually occurs where the values of the standard
deviation are the highest [40,41]. Therefore, when the design of experiment is performed,
it is easy to locate the space where it is necessarily too dense, and the experimental data
can improve the solution.

The GP method used to prepare surrogate surfaces is usually formulated in the
framework of Bayesian theory, which provides additional information on the magnitude
of the correlation between state and control variables. Knowing the significance of the
input–output correlation seems to be very important because on its basis it is possible
to exclude from the model the parameters that do not affect measurable quantities [41].
Automatic reduction saves experimental efforts for finding parameters that turn out to be
irrelevant in a given simulation. Such information can be obtained during the learning
process and is similar to the results of a sensitivity analysis [42] often performed to validate
the model.

However, GP-based stochastic surrogates have one significant drawback. Gaussian
Processes are usually parameterized in terms of covariance functions, which means that
the built models do not cope well with many outputs [39,41,43,44]. This problem, however,
does not appear in the research problem analyzed in this article. Here, the only parameter
is the concentration of propionic acid in the aqueous solution. The methodology presented
in the paper, combining spectrometric analyses, stochastic modeling and noise reduction
(with the reduction in dimensionality of the experimental data), is not only innovative but
also allows estimating acid concentrations in an aqueous solution in situ with a maximum
error of about 2%.

All the techniques described above, combined in one tool, make it possible to very
accurately predict propionic acid concentrations in aqueous solution in the laboratory.
When properly prepared and trained, the system is able to predict the correct response in a
fraction of a second, provided the absorbance spectra are properly measured. To the best
of our knowledge, there are no such implementations in laboratories that can estimate acid
concentrations in aqueous solutions with such high accuracy.

2. Materials and Methods
2.1. Spectroscpy Setup

In this research study, pure propionic acid (C3H6O2, catalog number 572940118) in
the form of a transparent liquid with a density of 0.990 g cm−3 (20 ◦C) and pH = 2.5
(100 g L−1 H2O, 20 ◦C) was used. The solvent used was distilled water (catalog number
524912001) with pH = 6.5, density of 1.00 g cm−3 and vapor pressure of 23 hPa (20 ◦C). The
air temperature in the laboratory and temperature of the reagents were stabilized at 20 ◦C
(∆0.1 ◦C).

Vis-NIR absorbance spectra were obtained by transmission method using two fiber
optic probes of the Tec5 AgroSpec spectrophotometer system, equipped with two detectors:
MMS1 NIR enh. and PGS 2.2tc, both of which are from Carl Zeiss (Oberkochen, Germany).
The RP-7 probe was used as a light source, which was located 25 mm above the sample in
the optical axis of the receiving probe. The RP-7 probe generated a light beam that was
to pass through the tested sample placed in a Petri dish made of borosilicate glass (see
Figure 1). The A40 probe was 50 mm below the Petri dish with the sample and collected
light transmitted through the sample. The Tec5 MultiSpec Pro 3.6 software was used to
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record the spectra. Absorbance spectra were recorded in the wavelength range 305–2210
nm with an interpolated resolution of 5 nm.
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Figure 1. A sample of the training set; (a) a mixture of propionic acid and distilled water in a Petri
dish; (b) a spectrophotometer with an RP-7 probe.

Each time, the acquisition of the spectrum of individual samples was repeated 20 times
and averaged. Due to the intention to use the calibration model, a reference level of
propionic acid concentrations in an aqueous solution was adopted. The concentration
of carboxylic acids (including propionic acid) in wet methane fermentation processes is
usually up to 5 g dm−3.

Each sample was obtained by adding propionic acid to an initial volume of distilled
water of 1000 cm3. The dosing of propionic acid was determined in 1.0 cm3 increments
for sample concentrations of 0.1% to 5.66% (v/v). Each time the concentration after adding
the next portion of propionic acid was recalculated by taking into account the changes
in the total volume of the solution caused by previous additions. Finally, the propor-
tion of propionic acid in the solution samples was presented as a percentage by mass
concentration (% m/m).

After each increment, a sample of the aqueous propionic acid solution was mixed for
5 min and then placed in a petri dish with 30 cm3 of the mixture, and absorbance spectra
were recorded. The samples were homogenized using a hydraulic mixer. The selected
method minimizes the access of solid, gaseous and chemical contaminants to the mixing
chamber [45,46]. In total, sixty absorbance spectra, reflecting changes in the concentration
of propionic acid in the aqueous solution from 0.1% to 5.66% (v/v), were recorded. Finally,
the absorbance spectra for both pure propionic acid and pure aqueous solvent were also
recorded. The samples were taken in accordance with EN ISO 8655.

In order to organize and support the search for optimal wavelength ranges from the
point of view of, e.g., criterion of the applicability of the model for the recognition of propi-
onic acid, a method consisting in comparing the absorbance spectra of pure propionic acid
with the spectra of an aqueous solution and the characteristics of the standard deviation
from the mean was used [47,48]. Models based on sets of absorbance spectra that have not
been mathematically pretreated and with a baseline transformation applied are described
in the next section.

2.2. Prper Orthogonal Decomposition

The sequence of direct measurements on the parameter ti(i = 1, . . . , M) corresponding
to a priori selected propionic acid concentration levels (in total 60; from 0.1% to 5.66% m/m)
has been gathered by using an NIR-Vis spectrophotometer. All results are assembled
in a matrix UN×M in which the m-th column um is a vector (snapshot) containing N
experimental data (absorbance spectra in the wavelength range from 305 nm to 2210 nm)
depending on the variable pm (concentration of propionic acid in aqueous solution).
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As the differences between the responses of the system results only from the variations
of the sought parameters in the given range, the snapshots appear to be correlated, i.e., they
form almost parallel vectors in their N-dimensional space (N = 382). In order to eliminate
the correlation, the methods of truncation or compression of the information contained in
the snapshot matrix U = [u1, . . . uM] can be used by referring to POD. The computational
procedures and mathematical theory related to POD have its origins far away in application
fields and time, they have their origins distant in time and areas of application and they are
currently used in the still up-to-date literature [49–53]. Only the specific procedure chosen
and used for the present purpose is presented here, without examining analytical details.

The above defined matrix U, preliminarily assembled from M = 60 laboratory tests,
is used to construct the symmetric, positive (semi)definite matrix D = UTU. Its real and
nonnegative eigenvalues λi and the corresponding eigenvectors vi are then computed and
used to generate the following orthonormal basis:

Φ = [Φ1, . . . , ΦM], (1)

with Equation (2).
Φi = Uviλ

−1/2
i , (2)

Due to orthonormality, matrix AM×M, which collects the amplitudes aM of the snap-
shots um, is described by the following relationship:

A = [a1, . . . , aM] = ΦTU, (3)

Thus, the following relationship is obtained.

U = ΦA, (4)

The correlation between the snapshots (previously expected and noticed for the
measured absorbance spectra in laboratory tests at different acid concentrations) means
that many amplitudes ai in the new basis Φ can be ignored. A mathematical proof that
eigenvalues λi quantify the negligibility of such amplitudes can be found in studies,
e.g., [54]. Keeping only the M largest eigenvalues (say 2–4 from 60), with M � M, the
approximation UN×M of the snapshot matrix UN×M is obtained by using the truncated
basis ΩN×M and the corresponding truncated amplitudes XN×M:

U = ΩX ∼= U, (5)

whence the following is obtained from.

X = ΩTU, (6)

This procedure often proves to be computationally difficult and time consuming, but
it only needs to be performed once for all as preparatory work to generate matrices Ω and
X, which can be used, for example, on a small tablet to work in situ in the laboratory. From
then on, the snapshot u∗ corresponding to any new parameter vector t∗ (new because not
included in the training process) can now be evaluated through (pod6) by its truncated
amplitude M-vector x(t∗).

2.3. Gauusian Processes

In order to correctly describe the construction of the surrogate surface based on
Gaussian Processes, the first thing is to consider is a Linear Regression (LR) model. In
general, LR is a linear function of model parameters w and at the same time is a nonlinear
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function of the input vector (i.e., truncated amplitude vector x), and it is usually defined
as follows:

y(x, w) =
M

∑
j=1

wj ϕj(x), (7)

which is a linear combination of nonlinear and fixed basis functions ϕj(x) of the input
variables (e.g., polynomial or radial basis functions).

For the N given training patterns (xn, tn), xn being the input vector and tn the response
for n = 1 . . . N, the parameters w of the linear model can be solved by, for example, the
penalized least squares method:

w =
(

ΘTΘ + αI
)−1

ΘTt, (8)

where ΘN×M is a design matrix with elements defined as θm(xn). The regularization
parameter α is called a hyperparameter and can be obtained by using a validation set
(similar to multilayer perceptrons) or by maximizing evidence of dataset p(t|α ) with
respect to α [41] within Bayesian inference.

Reformulating the linear model in terms of dual representation allows obtaining the
Gaussian process model. The training process of the linear model is performed here by
minimizing a regularized error (i.e., N × N symmetric Gram matrix):

K = ΘΘT = θ(x)Tθ
(
x′
)
= k

(
x, x′

)
, (9)

where k(x, x′) is a kernel function. The vector kn = k(an, a) represents n-th row or column
of K matrix.

The prediction for a new input x∗ can be computed by the following formula:

GP(x∗|x, t, α) = k(x, x∗)T(K + αI)−1t (10)

where t = (t1 . . . tN)
T is a vector of training target values, while k(x, x∗) is a covariance

between the all other inputs and a new input x∗.
Sine, according to Bayesian theory, is the dual representation of linear model result-

ing in the Gaussian process, and the kernel function is interpreted as a function of GP
covariance. By using a regression model, it is possible to calculate the distribution of the
target variable y(x∗) prediction for the new input vector x∗. For Gaussian Processes, the
conditional distribution p(y|t) is the Gaussian distribution with mean determined by the
following formula.

mean(x∗) = kTC−1t, (11)

Moreover, covariance is provided by the following:

σ2(x∗) = c− kTC−1k, (12)

where CN×M is the covariance matrix provided by the following formula:

C
(
x, x′

)
= k

(
x, x′

)
+ β−1I, (13)

where β is the variance of the target distribution and I is an identity matrix. The covariance
matrix C(x, x′) defines a relationship in which the vectors x and x′ closely adjacent in
the input space generate highly correlated values of y(x) and y(x′) in the output space.
A covariance function can be any function that will generate a specific non-negative
covariance matrix for any ordered set of (input) vectors (x1, . . . , xN), e.g., a stationary,
non-isotropic squared exponential covariance function k(x, x′) given by the following:

k
(
x, x′

)
= ν exp

(
−1

2

M

∑
i

ωi
(
xi − x′i

)2
)
+ b (14)
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where ν controls the vertical scale of the process, while b represents a bias that controls
the vertical offset of the Gaussian process. The ωi parameters control a different distance
measure in each dimension. If ωi is small then it has a little effect on the input and, therefore,
the i-th input is downweighted. These hyperparameters play a very important role mainly
because they possess a direct link to model sensitivities with respect to input parameters
and thus provide a measure of the importance of input parameters.

After defining the covariance function, it is possible to make predictions of the new
input vectors. Before that, however, it is necessary to determine the hyperparameters.

r = [ν, ω1, . . . , ωM, b, β]. (15)

In order to find those parameters, one can search for the most probable set by maxi-
mizing the log likelihood function given by the following:

ln p(t|r) = 1
2

ln|C| − 1
2

tC−1t− N
2

ln 2π, (16)

using any gradient-based optimization algorithms, such as a first-order batch Levenberg–
Marquardt Algorithm (LMA) or Trust Region Algorithm (TRA) [55]. In this study, TRA,
which provides fast convergence, was used.

2.4. Metamodel—Training and Testing

In order to properly train the model and then be able to reliably test it, first the
experimental set was divided into training and testing data. A total of 10 vectors, spaced at
equal intervals, were used for the test data, starting from the 6th record (0.588 m/m), every
6 to 60 (5.580 m/m), while the remaining 50 records were used for the model training.

In the first step, the absorbance spectrum in the full wavelength range from 305 nm to
2210 nm was used. The number of elements in truncated amplitude vectors varied from 5
to 30 in order to check for the value the best model performance can achieve. In the second
step, the limited wavelength range was used according to preliminary observations.

A simple check of the exact truncation of the wavelength range was then carried out,
where 9 combinations of the lower limit 1250, 1300 or 1350 and the upper limit 1750, 1800 or
1850 were used in the construction of POD. The check was performed with the amplitude
vector reduced to a priori selected 3 elements. For further tests, the wavelength range was
set at 1300–1800 nm.

It is expected that the fewer the elements in input vector x, the worse the estimate
becomes, which is due to an insufficient amount of information carried by the truncated
amplitude vectors. Similarly, if there are more elements, the estimation error becomes
greater because the data contain more noise. Therefore, the search of an optimal level of
truncation (from 2 to 8) in the narrowed wavelength range was also performed.

3. Results

Figure 2 shows all absorbance spectra of propionic acid concentration between 0
and 5.66% m/m in the full range of wavelengths (Figure 2a) and in the limited range
(Figure 2b).

Figure 3 presents the absorbance spectra of the following: propionic acid, aqueous
solution (average value for 60 samples with increasing concentration of propionic acid)
and standard deviation from the average. Pure propionic acid has the highest absorbance
in zone IV; therefore, it is expected that, also in this range, the absorbance graphs for all
concentrations of aqueous propionic acid solutions should show the greatest sensitivity.

The preliminary results of model performance based on the full range of wavelengths
of absorbance spectra are shown in Tables 1 and 2 and in Figure 4.
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Table 1. Mean estimation error generated by a model trained by input data truncated to 5, 10, 15, 20,
25 and 30 amplitudes in the full range of wavelengths of absorbance spectra.

Number of Elements in the Truncated Amplitude Vector Mean Estimation Error (%)

5 2.561
10 1.650
15 1.554
20 1.433
25 1.811
30 2.886
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Table 2. Estimation error generated by a model trained by input data truncated to 5, 10, 15, 20, 25 and 30 amplitudes in the
full range of wavelengths of absorbance spectra and for different concentration levels of propionic acid.

Propionic Acid Concentration Estimation Error with Respect to Number of Elements in the Truncated Amplitude Vector (%)

(% m/m) 30 25 20 15 10 5

0.58756 16.74 −5.978 0.877 −0.765 −0.217 −6.102
1.16825 1.031 −1.003 −1.813 −1.517 −1.850 −5.369
1.74220 −0.485 −1.462 2.648 1.988 2.149 1.275
2.30952 5.164 4.471 5.030 3.987 3.614 4.888
2.87033 0.447 1.731 −2.345 −1.747 −2.405 −0.736
3.42473 −0.820 0.891 −1.040 −0.133 0.478 0.601
3.97285 1.804 −0.116 0.253 −1.051 1.818 1.658
4.51477 −0.667 −1.122 0.052 −2.464 −0.404 −1.339
5.05061 1.070 1.224 0.223 −0.441 1.984 2.406
5.58048 0.635 0.111 0.046 1.441 1.579 1.236
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Table 3 shows the normalized cumulative sum of all eigenvalues and the first eight
eigenvalues calculated from matrix D of the model based on a truncated wavelength range
to preliminary selected limits 1300–1800 nm.

Table 3. Normalized cumulative sum of all eigenvalues and the first eight eigenvalues computed
from input data in the wavelength range truncated to 1300–1800 nm.

The Eigenvalue id Eigenvalue Normalized Cumulative Sum of Eigenvalues

1 10,271.4 99.99154
2 0.6824 99.99818
3 0.1666 99.99980
4 0.0039 99.99984
5 0.0028 99.99987
6 0.0021 99.99989
7 0.0018 99.99991
8 0.0015 99.99992

Table 4 shows the mean estimation error of the tuned model with truncated absorbance
spectra at different ranges of the lower and upper wavelength limits.
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Table 4. Mean estimation error generated by a model trained by input data truncated to 3 amplitudes
at different bounds of wavelengths of absorbance spectra.

Min Wavelength (nm) Max Wavelength (nm) Mean Estimation Error (%)

1250 1750 0.923
1250 1800 0.709
1250 1850 0.833
1300 1750 0.997
1300 1800 0.677
1300 1850 0.804
1350 1750 1.047
1350 1800 0.719
1350 1850 0.819

The performance of a model tuned by input data truncated to different levels (from
two to eight elements in the amplitude vector) are shown in Tables 5 and 6 as well as in
Figure 5.

Table 5. Mean estimation error generated by a model trained by input data truncated to 2, 3, 4, 5, 6, 7
and 8 amplitudes in the wavelength range truncated to 1300–1800 nm.

Number of Elements in the Truncated Amplitude Vector Mean Estimation Error (%)

2 13.44
3 0.677
4 0.668
5 0.682
6 0.681
7 0.898
8 1.047

Table 6. Estimation error generated by a model trained by input data truncated to 5, 10, 15, 20, 25 and 30 amplitudes in the
wavelength range truncated to 1300–1800 nm and for different concentration levels of propionic acid.

Propionic Acid Concentration Estimation Error with Respect to Number of Elements in the Truncated Amplitude Vector
(%)

(% m/m) 8 7 6 5 4 3 2

0.58756 1.776 0.850 −0.364 −0.392 −0.391 −0.059 −2.277
1.16825 3.462 3.022 2.193 2.196 2.154 2.240 33.12
1.74220 1.723 1.744 1.016 1.008 0.893 1.107 27.57
2.30952 −1.564 −1.609 −1.202 −1.207 −1.161 −1.102 −25.95
2.87033 −0.494 −0.558 −0.545 −0.543 −0.647 −0.555 −10.41
3.42473 0.086 0.021 0.148 0.144 0.137 0.234 14.05
3.97285 0.124 −0.047 −0.051 −0.047 −0.014 −0.074 −12.41
4.51477 0.289 0.247 0.318 0.314 0.323 0.403 −0.808
5.05061 0.822 0.877 0.810 0.813 0.789 0.753 −2.666
5.58048 −0.129 −0.003 −0.157 −0.156 −0.174 −0.237 5.125

The results obtained with a tuned model using a three-element amplitude vector and
the wavelength range limited to 1300–1800 nm are presented in Table 7 and Figure 6.

It is clearly visible that in both models (Figure 6) the standard deviation is much
higher for lower values of propionic acid concentrations. Furthermore, the normalized
error is higher for acid concentrations below 2%, which indicates a greater level of noise in
these concentration ranges.
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Table 7. The estimation (mean values, standard deviation and error) of a tuned model using a
3-element amplitude vector with a limited wavelength range (1300–1800 nm) of absorbance spectra.

Propionic Acid Concentration in Aqueous Solution
Estimation ErrorReference Value Estimated Value

(% m/m) (% m/m) (%)

0.58756 058755 ± 0.02497 0.001
1.16825 1.14166 ± 0.02136 2.276
1.74220 1.72256 ± 0.02650 1.127
2.30952 2.33508 ± 0.01488 −1.106
2.87033 2.88652 ± 0.01486 −0.564
3.42473 3.41694 ± 0.01622 0.227
3.97285 3.97585 ± 0.01821 −0.075
4.51477 4.49687 ± 0.01270 0.396
5.05061 5.01252 ± 0.01704 0.754
5.58048 5.59317 ± 0.02526 −0.227
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4. Discussion

The composition of spectral information and standard deviation allows for the identi-
fication of characteristic areas:

• I (400–920 nm)—generally low absorption of radiation by propionic acid;
• II (920–1300 nm)—the maximum absorbance values for propionic acid and aqueous

solution are similar;
• III (1300–1636 nm)—visible high absorbance for an aqueous solution; in the standard

deviation, there is a visible change in absorbance caused by the absorbance peak for
propionic acid just below 1400 nm;

• IV (1636–1860 nm)—visible high absorbance for propionic acid; standard deviation for
the mean of the solution samples shows a very distinct absorbance variance caused by
propionic acid;

• V (305–400 nm and 1860–2210 nm)—significant values of the standard deviation
visible due to signal noise.

The obtained absorption spectrum of propionic acid contains an interesting wave-
length range from 920 nm to 1860 nm, with peaks at 1150 nm, 1380 nm and between
1690 nm and 1780 nm and 1950 nm to 2170 nm. Propionic acid strongly absorbs radiation
in the following wavelength range: 920-1300 nm and 1636–1860 nm in the near infrared
range. The presence of water in the analyzed samples with solutions caused a significant
differentiation of radiation absorption in the range from 1300 nm to 1636 nm and from
1790 nm to 1860 nm (see Figures 2 and 3).

Moreover, the greatest differences between the radiation adsorption by propionic acid
and aqueous solution of propionic acid at a given acid concentration can be observed in
range III and IV. Section II shows similar absorbance values for both propionic acid and
aqueous solution of propionic acid.

It is clear from the analyses that the models that uses the full spectrum in the wave-
length range from 305 to 2210 nm are burdened with greater errors, because the measure-
ment data contain a large amount of noise located in the I and V regions (see Figure 2).
This is evidenced by the results presented in Tables 1 and 2 and Figure 3. The largest mean
estimation error, changing from 1.81% to 5.03%, is generated by the model for propionic
acid concentration from 1% to 3% m/m. The best results are achieved when training data
were truncated to 20 amplitudes.

The results generated by models trained with the absorbance spectrum in the indicated
wavelength ranges are much better (see Tables 5–7 as well as Figures 5 and 6), and the
learning process is much more stable. In this case, the problem of overfitting is much
less common because only three amplitudes are used, which significantly reduces the
amount of noise in the training data. The highest mean estimation error, ranging from
1.11% to 2.28%, is generated by the model for propionic acid concentrations from 1.15% to
2.30% m/m. Regardless of whether the analysis used the wavelength range only in the III
and IV range or in the II–IV range, the average estimation error did not exceed 0.7%.

5. Conclusions

The results of this study confirm the possibility of using spectrometric measurements
to monitor the content of propionic acid in aqueous solutions in an environment similar to
methane fermentation. The obtained calibration models correspond to the assumptions
of the accuracy of rapid detection methods in the quantitative analysis of volatile fatty
acids, such as the Nordman DOC316.52.93087. The results of the research study indicated
that further research is justified and should be focused on validation under the conditions
of a quasi-continuous fermentation processes, which is an important step in improving
prediction models.

The obtained results showed that propionic acid calibration models for which the
wavelength ranges were determined using qualitative indicators are more effective than
the models with non-selective detection ranges. On the basis of the research results, it is
possible to undertake further studies aimed at building the measurement system. The
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new measurement system, based on the proposed research method, renders it possible
to evaluate the quality parameters of methane fermentation online at a laboratory scale.
The proposed methodological solution also has implementation potentials, as this method
corresponds to related identification and predictive solutions used for the production of
biofuels [56]. This approach can easily be implemented in any laboratory equipped with
a spectrometer, provided that the training process is carried out a priori. The method
proposed here can also be extended to multi-component systems of aqueous solutions. All
efforts to improve biogas production are very current and important trends in terms of
energy consumption, production and estimates as well as their impact on emissions [57].
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