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1 INTRODUCTION
The shape optimization received a lot of attention in recent years mainly due to growing
interest in applications of such field in physics and engineering. The goal in geometry optimi-
zation is to find a shape among the set of all admissible shapes that minimizes a given objective
function. In the present paper the stochastic programming technique based on Gaussian
processes [1, 2] applied to shape optimization is presented. The optimal geometry of dental
implant subjected to static loads is designed here with the objective to minimize the Mises
effective stresses in selected zones of the model. The resulting stresses (state variables)
depend, obviously, on boundary and loading conditions but also on geometrical parameters
(control variables), which define the geometry of the model. The probable correlations between
the state variables are computed by making use of Principal Component Analysis.
The proposed algorithm formulated within Bayesian framework provides additionally the
information about the magnitude of correlation between state and control variables, i.e. the
relevance of input-output correlation.

2 NUMERICAL MODEL
The dental implant to be optimized is a two-component system [3] consists of a root and
abutment (both made of medical alloys of titanium) which are assembled by a screw. The
axisymmetric geometry and linear isotropic elasticity are assumed here, mainly for model
simplification. The five geometrical parameters composed of angular and linear dimensions
are selected as control variables which represent the input vector x, whereas the output vector
t contains the maximum equivalent stress values in selected a priori zones. There are three
zones in the model having different material properties, each zone contain three to seven
sub-zones where the maximum values of Huber-Mises-Hencky (HMH) stress are recorded.

3 PROCEDURE
Usually a several thousands of training pairs have to be generated in order to approximate
well such systems. An alternative (more economical) solution might be based on a stochastic
surrogate model which requires a smaller number of function evaluations. In order to build
such approximation we need first to collect the resulting stresses in vectors for each implant’s
component separately, i.e. we need to construct the input-output pairs for each zone:
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. Once the training pairs are constructed the probable correlation between

components of the vectors ti in each zone (A,B and C) needs to be ruled out of the system.
An effective procedure for performing this operation is Principal Component Analysis (PCA)
which: orthogonalizes the components of the vectors, it orders its orthogonal components in
descending order, and it eliminates those components that contribute the least to the variation
in the data set, so that the number of component in a new vectors ai is smaller then in ti.
When the new ’uncorrelated’ targets vectors ai are computed the surrogate models, for each
component of the vector separately, can be constructed. The very efficient way of building
such approximations are Gaussian processes viewed as Bayesian linear regression over a
possibly infinite number of basic functions. Assuming that a Gaussian process has zero
mean, we just need to define the covariance between any two points x and x′. A stationary,
non-isotropic squared exponential covariance function C
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is chosen, for which the

full target covariance is given by:
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where σν is the variance of the target distribution, the term b represents a bias that controls
the vertical offset of the Gaussian process, while ν0 controls the vertical scale of the process.
The wl parameters allow a different distance measure for each dimension. If wl is small then
the l-th input is downweighted and have little effect on the input.

All hyperparameters in the model must be positive, so it is convenient to consider them
in log space, namely: h = [log σν , log b, log ν0, logw1, . . . , logwd]. To estimate the model
parameters a supervised learning, based on a first-order batch Levenberg-Marquardt Algorithm
(LMA), is used, which provides fast and robust convergence. In order to optimize the training
procedure of a Gaussian process based surrogate models, the active learning criterion that
improve the global model fit is also utilized (i.e. a new training points are subsequently added
in the zones where the model predictions are poor).
Once the stochastic approximations of the numerical model are constructed, the prediction of
the stress distribution in each zone can be computed for generic x∗ and then the minimum
of such multi-objective system can be easily computed on-line, using either first-order or
gradient-free algorithm (e.g. LMA or Genetic Algorithm).
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