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ABSTRACT: Diagnostic analysis of dams means here assessment of possible structural damages (due to, ¢.g.,
alkali-silica reaction in concrete). Such damages may be primarily self-equilibrated stresses due to material
expansion, elastic stiffness degradation, decrease of compressive and tensile strength, and of fracture energy.
The procedure presented in this paper is intended to perform such diagnosis deep inside the concrete dam and is
based on “ad hoc” devised substantially novel mechanical experiments, on their finite element modelling and
on deterministic parameter identification through the minimization of the discrepancy norm between measured
quantities and their counterparts computed as functions of the sought parameters.

1 PRELIMINARY REMARKS

In present dam engineering the assessment of possibly
deteriorated material properties and of the stress state,
both in dam concrete and in foundation rocks, is nec-
essary in order to compute the present safety factors
with respect to various kinds of possible failures. Typ-
ical structural problems in concrete dam engineering
are dealt with e.g. in Pedro (1999) and Bourdarot et al.
(1994).

As for diagnostic analysis of possible damages in
concrete dams (due to alkali-silica reactions and/or
extreme loads like exceptional floods and earth-
quakes), the following methodological classification
can provide a concise overview, see e.g. Maier et al.
(2004), Fedele et al. (2006):

(a) overall dynamic excitation and accelerometric
measurements; (b) hydrostatical loading due to sea-
sonal variations of reservoir level and measurement
of consequent displacements by pendula, collimators,
and, recently, radar; (c) same as at (b), but with “fast”
hydrostatical loading performed by “ad hoc” changes
of the reservoir level; (d) local, traditional flat-jack
tests on dam surface and extensimetric or, in the future,
“digital image correlation” measurements; (e) tradi-
tional “overcoring” for damage and stress assessment
in-depth.

Overall diagnosis procedures are clearly limited to
the assessment of elastic stiffness distribution; the stat-
ical approaches provide more data if radar is employed
and are especially inexpensive if seasonal. Local tests
are needed in order to assess fairly accurately stress
states and inelastic material properties.
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In this paper a new methodology is proposed in
order to perform diagnostic analyses locally, in-depth
and in a relatively inexpensive and non-destructive
fashion. The diagnostic method here presented,
inspired by the traditional overcoring technique but
substantially different from it, is centered on inverse
analyses and is articulated in the operative phases spec-
ified in the subsequent Section. The in-depth material
characterization has been, since several decades, a
research subject, particularly in rock mechanics, and
a widely employed practice in geotechnical engineer-
ing. Wittke (1990) and Sjoberg & Klasson (2003) can
be regarded as representative references to the relevant
vast literature.

2 OUTLINE OF THE EXPERIMENTAL
PROCEDURE AND RELATED PARAMETER
IDENTIFICATION

The operative phases of the proposed diagnostic
method are listed below and schematically illustrated
in Figure 1.

a. A hole is drilled in the dam (Figure 1a).

b. A device called “dilatometer” is inserted in it.
The dilatometer basically consists of two sleeves
equipped with radial displacement gouges and,
between them, of two movable steel “arches”
(Figure 1b).

c. The drilling goes ahead, making the hole longer,
while the gouges measure the displacements due



Figure 1. Operative phases of the proposed procedure.

to the stress state modification caused by the
excavation advancement (Figure 1c).

. The two steel “arches”, governed by two small
hydraulic jacks (fed by a volumetric external
pump), apply two growing radial forces (equal
magnitude, opposite directions) on the hole’s wall.
The gouges measure the displacements, first gen-
erated in the linear elastic range (Figure 1d).

. The same operations of phase (d) are performed, but
this time the elastic limit is overcome by increasing
the jack pressure. The pump feeds the jacks through
small pipes placed into the tube which supports the
dilatometer and contains the drill shaft.

. A laptop containing an artificial neural net-
work, trained through computer simulations of
the mechanical tests, collects the signals from the
gouges, digitalizes them and performs inverse anal-
yses which provide the sought parameters, in the
following sequence: (i) Young modulus and Pois-
son coefficient (under the hypothesis of isotropic
material), on the basis of the experimental data col-
lected during phase (d); (ii) the stresses, two normal
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and one tangential, in the plane orthogonal to the
hole axis, on the basis of the data coming from
phase (c); (iii) the parameters governing a plastic
constitutive model and/or a quasi-brittle fracture
model (e.g.: the three parameters of Drucker-Prager
model and/or the two of the simplest cohesive crack
model).

g. The drilling goes ahead and the sequence of the
above outlined phases is repeated at a new position
and direction in the dam.

For the repeated inexpensive “in situ” use of the
equipment, accurate nonlinear finite element model-
ing is needed, but once-for-all only, in order to generate
by the “forward operators” a suitable number of “pat-
terns” for the “training” and the “testing” of the
neural networks to be employed on site.

The above outline of the proposed diagnostic proce-
dure for concrete dams can be clarified and motivated
by the following remarks.

a. No specimen is extracted from the borehole to be
tested in laboratory, at a basic difference from tradi-
tional core drilling procedures. Since dam concrete
is inhomogeneous with aggregate sizes larger in
average than in the usual concrete employed with
steel reinforcement for buildings and bridges, car-
rots should be rather large and, hence, damaging
(say, with a diameter an order of magnitude larger
than expected maximal aggregates) in order to
avoid misleading inaccurate experimental data.

B. Displacements, not strains, are measured. In fact,
strain gouges usually adopted for overcoring tech-
niques would be unsuitable for concrete, since,
clearly, strains are sensitive to local material pro-
perties (quite different from mortar to aggragate),
whereas displacements reflect, in a sense, aver-
age properties, namely the large-scale material
properties of structural engineering interest.

v. Inelastic properties are the main targets of the pro-
posed procedure, since so far such properties are
not assessed “in situ” and in-depth according to
the present practice of concrete dam engineering.

d. The instrumented equipment envisaged herein is
not available at present on the market, but it
is clearly possible (and relatively inexpensive) to
produce it by the present technology, even if
with major changes with respect to the current
practice. Therefore, the preliminary validation of
the method presented in what follows rests on a
pseudo-experimental approach, namely measur-
able data are computed by means of simulations
of foreseen experiments through a finite element
model, starting from reasonably assumed val-
ues of the sought parameters; then these values
are compared to those arrived at by the inverse
analyses, and a suitable discrepancy function is



minimized, taking those parameters as mathemat-
ical optimization variables. Clearly, recourse to
pseudo-experimental data for methodological val-
idation implies that the systematic (not random)
modeling errors are not considered.

. The proposed diagnostic technique is dealt with at
a preliminary design stage. To its further improve-
ment “sensitivity analyses” are useful, namely
numerical tests apt to make sure that the quantities
(here displacements) to be measured as “effects”
are sufficiently influenced by the sought para-
meters acting as “causes”, see e.g. Kleiber et al.
(1997). Some analyses of this kind are presented
within the computational exercises summarized in
Section 3.

COMPUTATIONAL VALIDATION
OF THE DIAGNOSTIC TECHNIQUE

The finite element model built up for the computer
simulation of tests is visualized in Figure 2 and its
main features are specified below.

a. In order to mitigate the computing efforts, the fol-

lowing simplifying assumptions are adopted for the
subsequent comparative numerical tests: (i) mate-
rial isotropy (which is not always acceptable for
dam concrete, particularly for rolled compacted
concrete (RCC)), in view of the frequently con-
sequent non-negligible orthotropy with horizontal
isotropy only; (ii) symmetries with respect to the
vertical and horizontal planes through the hole axis;
(iii) the three-dimensional domain of the problem
exhibits typical lengths which are 10 times longer
than the hole radius, so that the boundary can be
regarded as unaffected by the mechanical events
produced by the tests; (iv) rigid constraints are
imposed on the remote boundary (statical conden-
sation or infinite elements will be employed in
future investigations); (v) the longitudinal direc-
tion represents a principal direction for the stress
state with vanishing normal stress; (vi) the original
stress field before testing is uniform and generated
at Gauss points; (vii) the drilling of the hole is simu-
lated by removing radial restraints placed along the
hole boundary (such restraints being active when
the initial “in situ” stresses are enforced at the
Gauss points).

. The traditional finite element model qualitatively
described above, can quantitatively be specified
as follows: 57781 tetrahedral elements with linear
interpolations for displacements; 36111 degrees of
freedom; commercial code Abaqus (version 6.6).

. The constitutive models adopted herein for a first
validation are the following classical ones, see
Figure 3 and, e.g., Jirasek & Bazant (2001) or
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Figure 2. Finite element mesh adopted for the computa-
tional validation of the method; (a) 3D view, (b) mesh in the
transversal plane.

Kaliszky (1989): linear elasticity with 2 param-
eters, of which only the Young modulus E is to
identify, while Poisson ratio is assumed as v =
0.2; Drucker-Prager perfect plasticity (3 parame-
ters: cohesion d, hydrostatic compressive strength
pp and internal friction angle B), improved by a
“cap” (1 parameter: cap eccentricity R) in view of
expected stress states with dominant compression.

Reference values reasonably expected in dam con-
crete are attributed to the material parameters and
stresses to identify, namely: E = 28000 MPa, hydro-
static compressive strength Pb = 35 MPa, cohesion
d = 3.5 MPa, friction angle p = 51°, and cap eccen-
tricity R = 0.65; pre-existing horizontal and vertical
principal stresses: oy = 5 MPa and oy = 10 MPa,
respectively, both compressions. The other two para-
meters required by the model, i.e. the transition surface
radius (o) and the initial plastic volumetric deforma-
tion, were considered respectively equal to 0.6 and to 0.

Figure 4 shows some plots of imposed force vs
measured displacement of the “arches” with different
values attributed to the parameter p, which, together
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Figure 3. Drucker-Prager model with “cap” and relevant
parameters d, py, B and R are to identify.

Sensitivity with respect to the
hydrostatic compressive strength (pb)

124
1.0 + o
= 1 i ' 1 | P
£ 08 e T e e e
e —e— T
§ o6 e T
204+
x 0.2 4
00 = - + d— = i - -+ .- |
o 1 2 3 4 5 6 f 8 9 0 1
Steel plate displacement [mm]
|—35 =37 =40 -+ 42 [MPg]|

Figure 4. Force vs displacement concerning the “arches”
for various values for parameter py.

with R, governs the “cap” on Drucker-Prager model.
Plots like these visualize the sensitivity of measurable
quantities with respect to sought parameters, as a sim-
plified alternative to the sensitivity analysis in terms
of derivatives (Kleiber at al. 1997).

Using such values and the finite element model
shown in Figure 2, the radial displacement of the arch
is computed (up to 10 mm) as a function of the force
generated on it by the small jack. Such computations
are repeated and their results plotted in Figure 4 after
having each time assigned a value indicated in the
figure to one of the material parameters to identify.
The above sensitivity analyses show that the measure-
ments planned by means of the envisaged instruments
are likely to be adequate for the identification of the
sought parameters.

Present parameter identification by a deterministic
batch (non sequential) approach to inverse analysis,
means solution of a generally non-convex mathemati-
cal programming problem. Such problems are tackled
here first, to methodological validation purposes, by
the “Trust Region” iterative algorithm. This algorithm
is a special case of sequential quadratic programming
method: it implies at each step finite difference evalu-
ation of the gradient only (“first order algorithm”) and
solution of a quadratic program in two variables, see
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Figure 5. Convergence of the identification process: (a)

normalized elastic modulus E; (b) normalized internal fric-
tion angle p.

e.g. Coleman & Li (1996). The discrepancy function
to minimize is here defined as the Eulerian quadratic
norm of the differences between pseudo-experimental
data and their computed counterparts. In fact, the
inverse of the covariance matrix of measurement ran-
dom errors can be reasonably assumed as equal to the
identity matrix, since the instruments are all equal and
correlation is negligible.

The convergence processes resulting from some of
the exercises performed so far in this study, are visu-
alized in the following figures: elastic modulus and
friction angle (see Figure 5a and 5b), hydrostatic com-
pressive strength, cohesion and cap eccentricity (see
Figure 6a, 6b and 6¢), horizontal and vertical normal
stresses (see Figure 7a and 7b).

All parameters are “normalized” with respect to
their (above specified) values assumed in order to gen-
erate by “direct analyses” the pseudo-experimental
data employed as input of the inverse analyses. The
chosen initializations are rather distant from the val-
ues attributed to the parameters. This circumstance
helps to conjecture the absence of local minima of the
discrepancy function, a conjecture also supported by
visual maps of the discrepancy functions here omitted
for brevity.

The average computing time required by the above
outlined inverse analyses amounts to 35 hours with a
computer characterized by a 2GB RAM and a 2.4 GHz
velocity. Clearly, this circumstance represents a sig-
nificant burden in terms of cost and time, a burden
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Figure 6. Convergence of the identification processes: (a)
hydrostatic compressive strength py, (b) cohesion d, (c) cap
eccentricity R.

which can at present be avoided by recourse to soft
computing, specifically here to artificial neural net-
works (ANNSs), see Haykin (1999). Such practically
important feature of the diagnostic method proposed
herein can be outlined as follows (details and numer-
ical results will be presented in the full paper in
preparation).

The outline holds for each one of the three param-
eter identifications described in what precedes.

a. The set of experimental data which should repre-
sent the input of the inverse analysis is approxi-
mated in order to achieve a balance between input
and output of the ANN (the output consisting of
one or two parameters in the present context, of
three or four at most in future applications). Such
approximation is achieved by polynomials here
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Figure 7. Convergence of the identification processes: (a)
horizontal normal stress oy, (b) vertical normal stress oy .

(cf. e.g. Waszczyszyn (1999)), by proper orthog-
onal decomposition (probably better) in future
developments (see e.g. Ostrowski et al. (2005)).

B. The ANN “architecture” is designed according
to the criteria expounded in the literature (see
e.g. Waszczyszyn (1999) ) primarily in order to
avoid “overfitting” (here specifically two “hidden
layers”, each one with 5 active neurons).

y. Agrid of points s selected on a reasonably bounded
domain in the space of the sought parameters and
for each point the corresponding vector of mea-
surable quantities is computed by direct analysis
(through the finite element model) and approxi-
mated as hinted at phase (o).

3. A subset (here 500) of the patterns generated
in the preceding phase, after perturbation by a
suitable random “noise” (here with uniform prob-
ability density over +5%), is employed for the
ANN “training”, namely for the identification
of “weights” and “biases” of active neurons by
means of a traditional “back propagation” algo-
rithm. The remaining patterns (here 200) are used
for the ANN “testing”.

4 CLOSING REMARKS

The diagnostic technique briefly described in what
precedes exhibits several substantial novelties, poten-
tially advantageous in engineering practice. The most
promising features arise from accurate once-for-all
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computer simulations of the tests and on-site use of
artificial neural networks for inverse analyses in situ.
Investigations now in progress are intended to further
improve the efficiency of the method and to increase
the number of identifiable parameters, particularly by
means of the following prospects: sharp indenters,
employed after the arches, in order to provoke fracture
in an easier and more intensive fashion apt to accu-
rate assessment of fracture properties (fracture energy
“in primis”); optimized geometries of the dilatometer
positions and of the whole equipment; repeated tests
after 90 degree rotation of the instrument in order to
increase the available experimental data.
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