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Abstract: The main subject of this study is to determine the optimal position of a fixed number of
viscoelastic dampers on the surface of a thin (Kirchhoff-Love) plate. It is assumed that the dampers
are described according to the generalized Maxwell model. In order to determine the optimal
position of the dampers, a metaheuristic optimization method is used, called the particle swarm
optimization method. The non-dimensional damping ratio of the first mode of the plate vibrations is
assumed as an objective function in the task. The dynamic characteristics of the plate with dampers
are determined by solving the non-linear eigenproblem using the continuation method. The finite
element method is used to determine the stiffness matrix and the mass matrix occurring in the
considered eigenproblem. The results of exemplary numerical calculations are also presented, where
the final optimal arrangement of dampers on the surface of sample plates with different boundary
conditions is shown graphically.

Keywords: particle swarm optimization; finite element method; viscoelastic vibration dampers;
thin plates; non-dimensional damping ratio; continuation method; optimal placement of dampers

1. Introduction

The protection of engineering structure elements against the adverse effects of vi-
brations is an important issue in their design. Effective vibration damping is a key issue
in the safety of all engineering structures, from the simplest and smallest elements of
machine structures and through to machine foundations and skyscrapers. For this purpose,
additional vibration damping elements are often used. Such elements include the viscoelas-
tic vibration dampers mentioned in this paper. In many cases, the number of vibration
dampers in the structure must be limited and their location cannot be random. Therefore
an optimal arrangement of such dampers is often one of the most important issues to be
solved. The main goal of the presented research is the optimal placement of a finite number
of viscoelastic dampers inside the thin plate area. The problem of the optimal placement of
dampers in building structures is a fairly frequent subject of research, but usually these
studies relate to frame models—most often shear frames. The description of these studies
can be found, among others in the following papers [1–11].

For this purpose (In order to find the best position of the dampers), a metaheuristic
algorithm of particle swarm optimization might be used. Hereinafter, this will be referred
to as the PSO method. The PSO method has a wide practical application in solving
optimization problems. It is the subject of many scientific works in various fields. This
algorithm was created in 1995 as a result of work carried out by Kennedy and Eberhart [12].
It is a stochastic calculation algorithm based on the observation of the behavior of a moving
flock of birds. This algorithm makes it possible to find an approximate solution for various
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optimization tasks. The essence of the PSO method and its application for structure
optimization tasks is described in [13], where the authors examine the influence of the
algorithm coefficients on the solution of the truss optimization problem. The performance of
the PSO algorithm is known to be sensitive to the values assigned to its control parameters.
The results of the research on the impact of these parameters on the effectiveness of the
PSO method are presented in papers [14–16]. In addition, a number of modifications to
this optimization method were developed. Their description is in the papers [17–22]. A
consistent presentation of the development path and the current state of knowledge about
the PSO method can be found in the publication [23]. However, in this work the classic
variant of the PSO method [13] was used.

The free damped vibrations of rectangular thin plates equipped with viscoelastic
vibration dampers are analyzed in this research. Such plates might be a part of a larger
structure, e.g., a part of a foundation system or protective structure. The analysis was
carried out in order to find the optimal distribution of the set number of dampers on the
surface of the plate in order to suppress the first mode of vibration of the plate as much
as possible. For this purpose, the aforementioned PSO optimization method was used. A
generalized Maxwell model described i.a. in [24,25] is used to describe the dampers. The
finite element method was used to calculate the dynamic characteristics of the plate with
viscoelastic dampers. The FEM model for the plate element was developed based on the
well-known books [26,27] as well as [28].

In the performed numerical analyzes, it was necessary to solve the nonlinear eigen-
problem. For this purpose, the continuation method presented in the paper [29] was used.
This method was previously used only for multilayered beams [30,31] and 2D shear frame
structures with viscoelastic dampers [29,31]. Here it was expanded and adapted to Kirch-
hoff’s plate elements. All calculations were performed in the Octave software through the
authors implementation of the entire problem. The obtained results prove the effectiveness
of the proposed approach.

The main motivation to undertake the research described here was the need to solve
a practical engineering problem using relatively simple implementations. In the design
practice, optimal solutions are sought that will allow the achievement of the assumed
final result. In the studies under consideration, it is the effect of the maximum vibration
damping of the plate element included in the engineering structure. On the basis of the
obtained results, it can be concluded that both the robustness and effectiveness of the
presented approach has been proven.

2. Theoretical Background
2.1. Description of Plate Model according to Finite Element Method

In the Finite Element Method, the center plane of the plate is divided into a finite
number of elements. In this study, rectangular plate finite elements of plQ4 type, described
in [26–28] and shown in Figure 1, are used. Each such finite element is characterized by
four nodes with three degrees of freedom at each node.
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Thus, the deformation vector we
i of the i-th node in the finite element e is defined by three

quantities: deflection wi and two angles of rotation ϕix and ϕiy, so it can be written that:

we
i =

[
wi ϕix ϕiy

]T
=
[

wi
∂wi
∂y − ∂wi

∂x

]T
; i = 1, 2, 3, 4. (1)

The displacement field within each finite element is approximated with a fourth order
polynomial we(x, y) of two variables x and y, the formula of which is given in [28]. This
polynomial has twelve unknown coefficients αk (k = 1, 2, 3, . . . , 12) due to the number of
degrees of freedom in one finite element.

For each finite element e, twelve shape functions Ne
k(x, y) (k = 1, 2, 3, . . . , 12) are

determined. Each shape function Ne
k(x, y) corresponds to the k-th degree of freedom of the

element and is determined based on the displacement field we(x, y) formula. For this, an
appropriate system of twelve equations is solved. Knowing all the shape functions of an
element, the displacement field within the element e can be expressed as a linear combination
of the shape functions Ne

k(x, y), with coefficients being nodal displacements, i.e.,

we(x, y) = Newe, (2)

where we =
[
we

1, we
2, we

3, we
4
]T and Ne =

[
Ne

1, Ne
2, Ne

3, . . . Ne
12
]
.

On the basis of the knowledge of the shape functions, it is possible to determine
the element stiffness matrix Ke and the consistent inertia matrix Me of the element. The
formulas for determining these matrices are given in [26–28]. The dimension of the stiffness
and inertia matrices Ke and Me is 12× 12 due to the twelve degrees of freedom of a single
finite element.

2.2. The Viscoelastic Damper Model

In this paper, a description of viscoelastic damper according to a generalized Maxwell
model is assumed. This model is discussed, inter alia, in [24,25].

Using the classic description, the viscoelastic damper can be shown graphically as
in Figure 2. It can be seen from the figure that the damper consists of m elements called
Maxwell elements and an additional spring element. Each of the Maxwell elements contains
a viscous part with the constant cj (dashpot) and an elastic part (spring) with the constant
k j where j = 1, 2, . . . , m.
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The time-dependent force in the damper, denoted as u(t), is the sum of the forces
occurring in the individual elements, i.e.,

u(t) =
m

∑
j=0

uj(t). (3)
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For j = 0, the force in the spring element is expressed by the following formula:

u0(t) = k0∆q(t), (4)

where k0 is the stiffness parameter of the spring element and ∆q(t) = ql(t)− qk(t) is the
relative displacement of the damper (i.e., the difference of the displacements of the ends l
and k of the damper). For j = 1, 2, . . . , m, the force in the j-th Maxwell element satisfies the
following formula:

νjuj(t) +
.
uj(t) = k j∆

.
q(t) (5)

where νj = k j/cj is the quotient of the stiffness and damping coefficients of the j-th Maxwell element.
Using Laplace transform (L-transform) with zero initial conditions for formulas (4)

and (5) causes them to transform into forms:

u0(s) = k0∆q(s) (6)

uj(s) =
k js

νj + s
∆q(s) (7)

In the above formulas, s is an L-transform variable and uj(s), ∆q(s) are respectively
L-transforms of the time-dependent force function uj(t) in the j-th damper element and
the relative displacement function ∆q(t) of the damper. Laplace transform of the total force
u(t) in the damper takes the following form:

u(s) =
m

∑
j=0

uj(s) =

(
k0 +

m

∑
j=1

k js
νj + s

)
∆q(s). (8)

Formula (8) can be re-written in a shorter form as below:

u(s) = (Kr + Gr(s))∆q(s), (9)

where

Kr = k0; Gr(s) =
m

∑
j=1

k js
νj + s

. (10)

2.3. The Equation of Motion of the Plate with VE Dampers and Solution of Eigenproblem

The equation of motion of a structure with viscoelastic dampers can be written in the
following form:

M
..
q(t) + C

.
q(t) + Kq(t) = f(t). (11)

In the above equation, K, M and C denote the global plate stiffness, inertia and
damping matrices, respectively. The dimension of these matrices is 3n× 3n, where n is the
total number of nodes of all finite elements making up the plate. There are also two vectors
in the equation: q(t) is the 3n-dimensional plate nodal displacement vector and f (t) is the
vector of the forces acting on the plate from dampers. It is assumed in the equation that the
structural plate is not loaded with additional excitation forces.

The matrices K and M appearing in Equation (11) arise as a result of the aggregation
process of element matrices Ke and Me respectively. In numerical tests included in this
paper, the damping matrix C is adopted as the proportional damping matrix, i.e., it is a
linear combination of the matrices K and M.

After applying the Laplace transform with zero initial conditions, Equation (11) takes
the following algebraic form: (

s2M + sC + K
)

q(s) = f(s), (12)
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where q(s) is the L-transform of q(t) and f(s) can be expressed as follows:

f(s) = −
nd

∑
r=1

(Kr + Gr(s))Lrq(s). (13)

In the formula above, nd is the total number of dampers attached to the plate at
selected nodes of a finite element mesh and Lr is a global matrix indicating the location of
the r-th damper within the plate. It is a diagonal matrix with one in the row representing
the translational degree of freedom along which the r-th damper works. Formulas for
determining Kr and Gr(s) for the r-th damper are given in Section 2.2.

After substituting (13) to (12), the L-transform of the Equation (11) of motion of a
plate with viscoelastic dampers takes the form:(

s2M + sC + K + Kd + Gd(s)
)

q(s) = 0, (14)

where

Kd =
nd

∑
r=1

KrLr, (15)

Gd(s) =
nd

∑
r=1

Gr(s)Lr. (16)

Equation (14) is a nonlinear eigenproblem which is solved by eigenvalues s and
eigenvectors q(s). This problem can be solved e.g., according to the algorithm of the
continuation method described in more detail in [29] and used in this paper.

In the case of Equation (14), the components containing the variable s in the first
power are multiplied by the parameter κ ∈ [0; 1]. The equation can then be written as

h1(q, s) = D(s)q(s) = 0, (17)

where
D(s) = s2M + κsC + K + Kd + κGd(s). (18)

In order for the elements of the eigenvector q corresponding to the eigenvalue s to be
determined unambiguously, an additional normalizing equation of the following form is
introduced into the matrix Equation (17):

h2(q, s) =
1
2

q(s)T ∂D(s)
∂s

q(s)− a = 0, (19)

where a has a given value.
In the first step of the continuation method, in Equation (16) the parameter κ1 = 0 is

assumed and the generalized eigenproblem is solved. As a result of solving this problem,
the first approximations of eigenvalues s(1)1 , s(1)2 , . . . , s(1)3n and eigenvectors q(1)

1 , q(1)
2 , . . . , q(1)

3n

are obtained. On their basis, the parameter a(1)j = s(1)j

(
q(1)

j

)T
Mq(1)

j , where j = 1, 2, . . . , 3n,
is determined.

In the l-th step (l = 2, 3, 4, . . .) the increment ∆κl is assumed and the Newton method
is used to solve the system of Equation (17) with the additional Equation (19). For this
purpose, the system of incremental equations of the Newton method is solved using
κl = κl−1 + ∆κl , s(k−1)

j , q(k−1)
j and a(k−1)

j . Increments δq and δs are obtained from these
equations and the following are calculated:

s(k)j = s(k−1)
j + δs, (20)

q(k)
j = q(k−1)

j + δq, (21)
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a(k)j =
1
2

(
q(k)

j

)T ∂D(s)
∂s

q(k)
j . (22)

Successive approximations of the j-th eigenvalue and j-th eigenvector in the l-th step
of the algorithm are calculated until the desired accuracy of the final result is achieved.

The final values of s(k)j , q(k)
j and a(k)j obtained in the l-th step are taken as starting

values for the step l + 1 and the new parameter κl+1 = κl + ∆κl+1.
The procedure described above is carried out up to the value of the parameter κ = 1,

when the final eigenvalues and eigenvectors for the nonlinear eigenproblem (14) are obtained.
The obtained eigenvalues of the problem (14) are complex numbers of the form sj =

µj + iηj. On this basis, the j-th natural frequency ωj of the structure and the non-dimensional
damping ratio γj of the j-th mode of vibration are determined from the formulas:

ω2
j = µ2

j + η2
j ; γj = −

µj

ωj
. (23)

In the research, the optimal placement of the vibration dampers in the plate area is
sought. In this case the optimal placement of the dampers is understood to mean their
position for which the first form of vibration will be suppressed to the maximum. Such a
situation occurs when the non-dimensional damping ratio takes its maximum value. The
continuation method makes it possible to calculate the non-dimensional damping ratio for
a single mode of vibration without having to solve the entire eigenproblem.

2.4. Fundamentals of Particle Swarm Method

The aim of this paper is the selection of the optimal location of viscoelastic dampers
supporting the Kirchhoff plate. The particle swarm method (PSO) was used to solve this
problem. It is one of the gradientless optimization methods. Its algorithm is based on
searching the space of possible solutions by the so-called particles [12]. Particles can be
interpreted as points moving in a multidimensional space. The particle coordinates are
the current values of the variables of the considered optimization process. The number of
particles in a given task is constant, and their set is called a swarm. The first step of the
PSO algorithm is to determine the initial position of the particles by randomly selecting
points from the solution space. Each of these points corresponds to one particle. During
the steps of the optimization procedure, the particles move in search of a better position,
i.e., a solution for which the value of the objective function will be greater (if the maximum
of the objective function is sought). Moving the swarm in the solution space is treated
as a process taking place in a contractual time. The subsequent steps of the optimization
procedure are treated as moments of the aforementioned contractual time. Each particle
has assigned so-called neighbors, which are selected swarm particles. This assignment is
usually static, meaning it takes place once and is done at the beginning of the computation.

The position of the i-th particle in the (k + 1)-th time step is given by the formula:

xi
k+1 = xi

k + vi
k+1∆t, (24)

where ∆t is the time step. It is usually taken to be equal to 1. The symbol vi
k+1 denotes the

updated particle velocity vector, which is calculated from the relationship:

vi
k+1 = wkvi

k + c1L1k
pi

k − xi
k

∆t
+ c2L2k

ps
k − xi

k
∆t

, (25)

where pi
k and ps

k are the best position of the i-th particle and the best position of the
particle in its neighborhood after k time steps, respectively. The symbols L1k and L2k denote
diagonal matrices whose elements are random numbers with an even distribution from the
interval (0,1). These numbers change with each step of the optimization procedure. The
quantities c1 and c2 are fixed weight multipliers called cognitive and social parameters,
respectively. The coefficient wk should be interpreted as a measure of the inertia of the
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particle’s motion. A broad discussion of the principles of selecting the c1, c2 and wk
coefficients and their impact on the efficiency of the particle swarm method can be found
in the literature [12–16].

In the research to which this paper is devoted, the objective function was assumed in
the form of a dimensionless damping ratio of the plate. The task of the PSO algorithm is to
find such a position of vibration dampers for which this ratio will assume the maximum
value. It was not necessary to introduce restrictions for the objective function. The design
variables are the coordinates of the position of the dampers. It was assumed that the
dampers can be located in the FEM mesh nodes of the plate, which considerably simplifies
the mathematical model of the analyzed structure. For the design variables, a limitation
resulting directly from the model geometry was adopted—the coordinates of the damper
mounting points cannot extend beyond the outer edges of the plate. The second limitation
consisted in excluding the possibility of locating more than one vibration damper in the
same node.

Two criteria have been defined to stop the optimization process. The first criterion
concerned changes in the value of the objective function in the subsequent time steps of the
procedure. It was assumed that if the best position of the whole swarm particle in the next
five steps does not change, then the maximum of the objective function has been reached.
The second criterion related to the number of steps in the optimization procedure. It was
assumed that the number of steps should not exceed a predetermined value.

In summary, the algorithm of the particle swarm method can be written as the follow-
ing steps:

1. Adopting initial positions and initial velocities of particles;
2. Checking the limiting condition of termination;
3. Calculation of the value of the objective function for the positions of individual

particles;
4. Updating the best position of each particle and the best position of the particle in the

vicinity of each particle after k iterations;
5. Determination of new positions and velocities of particles according to Formulas (24) and (25);
6. Repeating steps 2–5 until the accepted criteria for stopping the calculations are met.

3. Numerical Examples

This section presents the results of PSO optimization carried out on the example of
an isotropic rectangular plate. Plates with two different means of support are considered.
The first plate considered is clamped on one edge. In turn, the second plate under consid-
eration is clamped on two adjacent edges and simply-supported on the third edge. Both
ways of supporting the plates are shown in Figure 3. The dimensions of both plates are
lx × ly × h = (2.2× 2.2× 0.02) m. The adopted material properties of plates are as follows:
E = 205 GPa, ν = 0.3, ρ = 7850 kg/m3.
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Figure 3. Ways of supporting the analyzed plates: (a) Plate clamped on one edge; (b) Plate clamped
on two adjacent edges and simply-supported on the third edge.

The optimization task consists in arranging a fixed number of dampers on the surface
of the plate. It is assumed that the viscoelastic dampers are attached to the plate with
one end in points of its surface and the other end to the rigid base. All dampers are the
same, each containing one spring element and one Maxwell element. Due to the fact that
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the aim of the research is to determine the optimal position of the dampers in the area of
the plate, and not to test the effectiveness of the dampers themselves, the selection of the
parameters of the damper model plays a rather secondary role. In order that the values of
the damper parameters do not differ significantly from the parameters of the actual models
of viscoelastic dampers, they were adopted using the data available in the literature [32]
and adjusted to the given problem. The values adopted in this way and assumed for the
reference temperature T0 = 0.2 ◦C are as follows:

k0 = 108.56 N/m; k1 = 19968.09 N/m; c1 = 229.63 Ns/m. (26)

The following assumptions are made in the optimization task under consideration
using the PSO method:

• Plate discretization with FEM mesh with dimensions of 10× 10 or 15× 15;
• The assumed objective function—non-dimensional damping ratio of the first mode

of vibration;
• Possible locations of the viscoelastic dampers—internal nodes of the FEM mesh dis-

cretizing the plate;
• The method of determining the optimal position of the assumed number of dampers—

obtaining the maximum value of the objective function;
• The initial velocities of the swarm particles in each environment are assumed to be zero;
• Accepted values of cognitive parameter and social parameter: c1 = c2 = 1.0;
• Accepted value of the inertia weight: w = 0.75;
• The adopted maximum number of iterations of the PSO algorithm: 15.

3.1. Example No 1

In this subsection, a plate fixed on one edge, as shown in Figure 3a, is considered. It is
assumed that one damper should be located on the surface of the plate so that the damping
of the first mode of vibrations is as high as possible. With this assumption, the value of the
non-dimensional damping ratio γ for the first mode of vibration should be maximized.

In this example, two neighborhood cases for swarm particles will be considered:

1. One neighborhood is assumed within the plate and four potential positions of swarm
particles are randomly selected;

2. Four neighborhoods are assumed within the plate and four potential positions of
swarm particles in each neighborhood are randomly selected

In case 1, the neighborhood covers the entire surface of the plate. However, in case 2,
individual neighborhoods are assumed in the subsequent quarters of the plate surface,
as shown in Figure 4. Since one damper is to be arranged on the surface of the plate, a
swarm particle is identified with a single damper and characterized by x and y coordinates
defining its position on the plate surface. As mentioned earlier, the swarm consists of four
particles randomly taken in each neighborhood isolated on the surface of the plate.
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In the considered example, discretization of the plate surface is adopted using a FEM
mesh with dimensions of 10× 10. Possible positions of the dampers are assumed in the
inner nodes of the mesh formed in this way. Figure 5a shows the initial, random selection
of swarm particles (dampers) for the case of a task with one neighborhood on the surface
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of the plate. In this initial swarm, particle number 4 takes the most favorable position
because the non-dimensional damping ratio for this location is the largest. This is the most
favorable position of the swarm particle in the zero iteration. Figure 5b shows how the
best location of the particles of a four-element swarm changes in subsequent iterations of
the PSO algorithm execution. At the individual most favorable positions of the particles,
the corresponding value of the objective function, which is the non-dimensional damping
ratio, is given. The best position of the damper on the plate surface is marked in red in
Figure 5b and the value of the objective function γ = 0.096343 corresponds to it.
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Further, the task of finding the optimal location of the damper will be solved for the case
of four neighborhoods in the area of the plate, as shown in Figure 4b. The randomly chosen
positions of four swarm particles in each of the neighborhoods are shown in Figure 6a–d.
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Figure 7a–d shows the most favorable positions of the swarm particles in subsequent
iterations of the PSO algorithm for individual neighborhoods. It can be seen that regardless
of the choice of neighborhoods, the optimal final position of the damper occurs near the
center of the free edge of the plate, as it was in the previous case of a plate with one
neighborhood. This means that the assumed objective function has no local extremes on
the plate surface and the most advantageous particle moves to the global extremum from
each of its neighborhoods.
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Figure 7. The most favorable positions of the swarm particles achieved in subsequent iterations of
the PSO algorithm in individual plate neighborhoods: (a) Neighborhood 1; (b) Neighborhood 2;
(c) Neighborhood 3; (d) Neighborhood 4.

From the above-discussed cases of one or more assumed neighborhoods on the surface
of the plate, it follows that the optimal location of one viscoelastic damper occurs near the
center of the free edge of the cantilevered plate.

3.2. Example No 2

In this subsection, a plate fixed on two adjacent edges and simply supported on the
third edge, as shown in Figure 3b, is considered. The reason for assuming such conditions
for supporting the plate was the willingness to adopt unusual boundary conditions and
create an asymmetric problem in which the optimal placement of the dampers is not
obvious in advance. It is assumed that four dampers should be located on the surface of
the plate. As in example 1, the damping of the first mode of vibrations should be as high as
possible. With this assumption, the value of the non-dimensional damping ratio γ for the
first mode of vibration should be maximized.

In the present example, two neighborhoods are assumed on the surface of the plate
and eight potential positions of the four dampers in each neighborhood. Contrary to the
previous example, the exact division of the plate surface into the neighborhoods is not
assumed now. Swarm particles from each neighborhood are taken completely randomly.
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It should be noted that now a particle of the swarm is a set of four dampers, not
a single damper as it was before. Thus, each swarm particle is characterized by eight
coordinates (the x and y coordinates of individual dampers that make up a four-element
swarm particle). Figure 8 shows randomly adopted swarm particles (i.e., groups of four
dampers) for each of the two plate neighborhoods for three cases of draw. Individual
groups of four dampers are marked in the figure with successive numbers from 1 to 8.
Discretization of the plate was adopted using a FEM mesh with dimensions of 15× 15.
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The final result of the optimization using the PSO method is shown in Figure 9, starting
with the preliminary selection of a swarm according to the neighborhoods in Figure 8. The
figure also shows the values of the objective function for each final position of the dampers.
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Based on the optimization results obtained from the two neighborhoods for three cases
of draw, it can be concluded that they differ slightly from each other. This may result from
the fact that in the swarm method only a close to optimal solution is sought. The initial
selection of the position of the swarm particles may have some influence on the accuracy of
the final result. Hence, in more complex tasks, where more than one damper is selected, it
is more advantageous to assume several neighborhoods initially and make several draws
of their placement. Then, as the optimal position, the one that corresponds to the greater
value of the non-dimensional damping ratio should be chosen. In the considered example,
the one shown in Figure 9e was adopted as the final optimal location of the dampers. To
some extent, this location can be predicted on the basis of the graph of the first mode of
undamped vibrations of the plate, which is shown in Figure 10. This figure shows the first
four modes of undamped vibrations. As can be seen, the arrangement of the three dampers
repeated for most of the cases from Figure 9 is at the extreme point of the graph of the first
mode of undamped vibration from Figure 10.
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Figure 10. Diagrams of the first four modes of undamped vibrations for the plate mounted according
to Figure 3b.

In order to determine the influence of the optimal position of the dampers on the
dynamic characteristics of the tested plate, the first four values of the natural frequency were
determined. The obtained results are summarized in Table 1. The case of a plate without
dampers for different discretization of the plate surface with FEM mesh and the case of a
plate with dampers for their position according to Figure 9e was taken into account.

Table 1. The natural frequencies of the plate from Example 2 disregarding the influence of the
presence of dampers and taking them into account at the optimal location obtained.

Natural Frequencies ω [rad/s]

Mode
Plate without Dampers with Different

FEM Discretization
Plate with Dampers
Located according to

Figure 9eMesh 10 × 10 Mesh 15 × 15

1 67.808 67.802 72.896

2 138.279 138.812 141.802

3 200.620 200.449 201.151

4 271.529 273.269 273.679
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4. Discussion

In this paper, the method of optimal selection of viscoelastic vibration dampers on the
surface of the plate was presented based on the particle swarm optimization algorithm. The
dampers were selected to obtain the greatest possible damping of the first mode of vibration
by maximizing the corresponding function of the non-dimensional damping ratio.

The selection of cognitive and social parameters as well as the weight of inertia has a
large impact on the final results of optimization using the swarm method. The selection
of cognitive and social parameters, i.e., c1,and c2 respectively, shows how the speed of
the current particle depends on itself or on the entire swarm. In the considered problem
of the optimal selection of dampers, the adoption of the same values of both coefficients,
i.e., c1 = c2 = 1.0, turned out to be the most advantageous. Taking one of these factors over
the other resulted in less satisfactory final results. The weight of inertia w could be adopted
from the range (0,1). The research conducted by the authors allowed for the conclusion
that it is more advantageous to adopt the value of the inertia coefficient closer to 1. Then
the swarm particle velocities are updated more widely and the solution tends to reach the
optimal level faster and more precisely. Hence, in the considered examples, it was assumed
that w = 0.75.

It is worth discussing the influence of the initial selection of swarm particles on the
final results. In the examples considered earlier, the initial swarm was selected randomly. In
example 1, regardless of the selection of swarm particles and the number of neighborhoods,
the final position of the damper was the same. On the other hand, in example 2, the final
results differed for the randomly selected swarms from the two neighborhoods. Therefore, it
can be concluded that for more complex problems it is more advantageous to choose more
than one neighborhood and solve the same task several times for different selections of swarm
particles. If the final results are similar to each other, the optimal solution should be chosen in
a way that allows for the obtaining of a more favorable value of the objective function.

At the end of the discussion, it is worth mentioning the selection of the objective
function. In this study, the non-dimensional damping ratio was adopted. Then, in the
iterative process of the PSO method, the value of the objective function thus assumed
should be calculated repeatedly. The process of calculating the non-dimensional damping
ratio is also iterative, so the final results of the PSO algorithm are obtained at the expense
of considerable computational time. Therefore, in order to speed up the PSO optimization
algorithm, in the considered tasks of optimizing the position of dampers in plates it would
be necessary to test for the selection of another objective function.

5. Conclusions

The PSO method applied to the optimal selection of viscoelastic dampers on the plate
surface presented in this paper allows for the obtaining of satisfactory results. The method
allows for the finding of a solution close to the optimal one. The final result of the task is
significantly influenced by the selection of the PSO coefficients and the initial adoption
of the set of swarm particles. It is advisable to select several environments in order to
compare the quality of final results. On the other hand, the use of the continuation method
to solve the nonlinear eigenproblem in Kirchhoff plates turned out to be a very promising
approach which not only allows for a quick calculation of the plate vibration eigenvalues,
but is also very precise. So far, in the vast majority of works, the continuation method
has been presented for structures with a one-dimensional description of deformation i.e.,
beams and shear frames.

The adoption of the optimal position of the dampers resulted in an increase in the
frequency of natural vibrations for the first mode of vibrations, which is the most important
in the design of dynamically loaded structures. In order to achieve a more significant
change in the dynamic characteristics of the plate, it would be necessary to adopt a larger
number of dampers and/or change their parameters. Taking into account the presence of
viscoelastic dampers, an increase in the natural frequency of the structure-dampers system
is additionally obtained. The viscoelastic damper contains a stiffness element, and thus
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the resultant stiffness of the entire system becomes greater. This results in an increase in
the frequency of free circular vibrations of the plate-damper system compared to the pure
structure (plate). A more pronounced effect of the presence of dampers will be visible
for forced vibrations analysis (harmonically or not), which will show a decrease in the
amplitudes of displacements in selected points in the structure, i.e., in finite element nodes.
Another element motivating us to take up this topic is to demonstrate the usefulness of the
continuation method.

The presented method can be improved by changing the objective function, which
can significantly improve the computational burden compared to the one based on the di-
mensionless damping factor that was considered in this preliminary study. All calculations
were carried out using the authors’ implementation in the Octave symbolic programming
language, therefore each adoption and improvement can be done efficiently. The presented
solution can be also easily transferred to the dynamics of the structural system consisting,
for example, of a plate (foundation) resting on a finite number of vibro-isolators which do
not have to be symmetrically or regularly arranged.
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