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Abstract: Thin-walled beams are increasingly used in light engineering structures. They are eco-
nomical, easy to manufacture and to install, and their load capacity-to-weight ratio is very favora-
ble. However, their walls are prone to local buckling, which leads to a reduction of compressive, as 
well as flexural and torsional, stiffness. Such imperfections can be included in such components in 
various ways, e.g., by reducing the cross-sectional area. This article presents a method based on the 
numerical homogenization of a thin-walled beam model that includes geometric imperfections. 
The homogenization procedure uses a numerical 3D model of a selected piece of a thin-walled 
beam section, the so-called representative volume element (RVE). Although the model is based on 
the finite element method (FEM), no formal analysis is performed. The FE model is only used to 
build the full stiffness matrix of the model with geometric imperfections. The stiffness matrix is 
then condensed to the outer nodes of the RVE, and the effective stiffness of the cross-section is 
calculated by using the principle of the elastic equilibrium of the strain energy. It is clear from the 
conducted analyses that the introduced imperfections cause the decreases in the calculated stiff-
nesses in comparison to the model without imperfections. 

Keywords: numerical homogenization; local imperfections; thin-walled beams; finite element 
analysis 
 

1. Introduction 
Thin-walled cross-sections have been used in structural engineering for decades [1–

3]. The smallest thickness in a typical thin-walled member reaches 1.5 mm. The 
thin-walled cross-sections are produced from sheet steel, usually with higher strength, 
therefore steel such as S320 or S355 is often used to form particular thin-walled beams. 
The sheets are cold-bended to obtain the desired cross-section; therefore, due to produc-
tion methods, there are obvious limitations on the shape of thin-walled cross-sections. 
The most popular in structural engineering are Z or C profiles [4,5]; however, Sigma 
profiles [6,7] have also recently been used. Structural members with thin-walled 
cross-sections are used in light structures as one of the first load-bearing elements; for 
instance in roof purlins, but also as secondary load-bearing elements in steel sheds, or 
supporting structures in photovoltaic installations, such as rafters or columns. 

Recently, due to the increasing popularity of energy from renewable sources, but 
also due tothe  geopolitical situation in Europe, solar-power photovoltaics have gained 
more interest. Of three main sources, wind, hydro, and solar power, the solar source is 
the most rapidly developing. In 2008, electricity generated from solar power was 1% in 
total, while in 2020, the value was 14% [8]. Since large solar farms are usually located on 
the ground, they need a relatively economical and reliable system of fastening to the 
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foundation, which is most often made of thin-walled structures. 
The main advantage of thin-walled sections is that their application allows for the 

optimal use of the construction material [9]. The relation of the load-bearing strength to 
weight of this construction element is high, compared to other typical steel structures 
from hot-rolled elements, such as I-beams, rectangular, or square pipes. Furthermore, 
nowadays, when the price of steel is breaking new records in Europe, the use of 
thin-walled steel structures is a reasonable and efficient way to avoid significant overin-
vestment due to the rapidly increasing price of the material. Furthermore, due to low 
weight, the mounting of the structure is faster and easier—heavy construction and 
transport equipment is not required. 

Apart from all of the above-mentioned advantages, the biggest disadvantage of the 
thin-walled cross-sections is their vulnerability to imperfections, both material and geo-
metric. The imperfection may lead to local [10] or global [10–12] buckling even for rela-
tively small loads. The buckling results in the lower stiffness of the structure due to 
compression, bending, and/or shearing forces. 

If a structure design is very complex, a three-dimensional finite element method 
(FEM) model is required to take into consideration the full integrity of the structure and 
the direct transmission of the loads onto lower substructures. Using FEM and creating a 
full 3D model for very complex structures would not only be laborious but also very 
time-consuming in terms of modeling time and computational cost [13]. In such cases, the 
complex structures are often modeled with a mesoscale approach, in which some parts of 
the structure are simplified to reduce the cost of the computations without losing the 
required accuracy [14,15]. Simplification may be obtained through adopting the numer-
ical homogenization technique, which will be able to represent the behavior of the sub-
structure with sufficient accuracy. In such cases, the application of numerical homoge-
nization techniques may significantly speed up the computations. The reduction in the 
size of the FEM equation system is usually several times [16]. 

In the literature, there are various homogenization methods. One approach uses the 
equivalent of the deformation energy [9,17–21]. The authors of this paper wrote several 
papers regarding the numerical homogenization technique for plates, which were based 
on a concept from Biancolini [17]. This method was extended and successfully used for 
the homogenization of layered sections of shells in corrugated boards [18,20] and con-
crete slabs reinforced with spatial trusses [19]. Furthermore, this numerical technique 
was modified for beam analysis and was applied for perforated thin-walled 
cross-sections of Z and C profiles and rectangular pipes [21]. Moreover, it has been 
shown that the homogenization technique can be used in structural optimization to effi-
ciently obtain solutions. In [9], the geometrical parameters of the thin-walled 
cross-section were sought by using surrogate models without losing the accuracy of the 
calculation results. Not only the structural parameters may be optimized but also the 
material [22,23] or the topology of the structure [24,25]. 

Typical homogenization techniques are taking into consideration a periodic part of 
the structure or body. In the calculation, usually the geometry and the material are ide-
alized, i.e., they have no imperfections. Since, for thin-walled structures such as a Z or C 
profile, even small loading may cause initial instability, so taking imperfections into ac-
count when applying the homogenization technique can be crucial for the correct deter-
mination of the actual stiffness of the structure, e.g., in the case of the flexural buckling of 
purlins. 

This concern was the motivation to conduct numerical research in this direction in 
the article. The main purpose of this work is to quantify the reduction in the effective 
stiffness of a thin-walled beam, taking into account local imperfections due to compres-
sion, bending, or shear via the numerical homogenization technique. It is also indicated 
herein which buckling mode may be representative to be used while taking into account 
imperfections instead of computing buckling modes for all load-cases separately. 
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The Materials and Methods chapter consists of four sections. In the first section, the 
general workflow is described, while in the second section, the mathematical details of 
the homogenization method used are summarized. In the third section, the buckling 
analysis from an algorithmic point of view is presented, while in the fourth section, the 
representative volume element (RVE) models of the Z-profile used in the study are 
shown. The Results chapter contains the outcomes of the numerical homogenization of 
the reference Z-profile case and its counterparts for the same beam section with varied 
imperfections. The comparison to the reference case is also included. In the Discussion 
and Conclusions chapters, the results of the comparison are commented on, and the final 
outlines are presented. 

This article continues the work on homogenization presented in our previous pa-
pers. However, in this case, a thin-walled open section is analyzed, taking into account 
the geometrical imperfections of the section. In order to correctly introduce imperfections 
to the model, in the first step, displacements resulting from different buckling modes of 
the cross-section are introduced into the model, taking into account the selected bound-
ary conditions. Then, the influence of these imperfections on the stiffness drops, which 
are determined by the numerical homogenization method, is checked. Eventually, a form 
of imperfection was chosen that was the most representative. 

2. Materials and Methods 
2.1. General Information (Workflow) 

In this study, the influence of the geometric imperfection due to particular defor-
mation mode on the mechanical characteristics of the beam section was computed. The 
scheme illustrating the study workflow is presented in Figure 1. First, the numerical 
shell-to-beam homogenization method [18,21] was implemented (see Section 2.2). Thanks 
to the homogenization, the compressive stiffness (𝐸𝐴), bending stiffness about the hori-
zontal axis (𝐸𝐼௫), and vertical axis (𝐸𝐼௬) and shearing in the plane of the web (𝐺௭௫𝐴) and 
flanges (𝐺௭௬𝐴) were calculated. 

 
Figure 1. Schematic illustration of the study workflow: shell-to-beam homogenization (Garbowski 
et al. 2021) for the reference beam and its counterparts for beams with imperfections due to dif-
ferent modes. 
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Then, by using this method, the selected Z-profile (see Section 2.4) without any im-
perfection was homogenized, and its representative ABDR matrix [18] (according to a 
lamination theory) was computed—this result is considered in the study as the reference 
result. Next, the buckling analyses (see Section 2.3) were performed for different defor-
mation modes, received from applying typical loads: compression and bending/shearing 
forces in two directions. The buckling modes received with different scale ratios were 
then used to compute the weakened mechanical properties of the beams by applying the 
homogenization method (see Section 2.4). Later, those results were compared to the ref-
erence one in order to select one deformation mode that could be representative for all 
cases. 

2.2. Shell-to-Beam Numerical Homogenization 
As in [21], in the homogenization process, the basic principle of strain energy 

equivalence in the idealized and digitized model was also used here. The most wide-
spread and versatile among other methods, the finite element (FE) method was used here 
for the digitization. The numerical homogenization procedure within this framework is 
divided into three steps. In the first step, one can identify two phases: first, the FE dis-
cretization of the selected RVE is required, and second, the assembly of the full stiffness 
matrix [𝐊] of the entire RVE needs to be performed, which is condensed [𝐊௘] later to 
the active, external nodes only (indicated in the red color in Figure 1). In the notation of 
the method, 𝑒 is for external nodes, while 𝑖 determines the internal nodes. 

In the second step, a transformation matrix should be constructed that associates 
generalized strains and nodal displacements. In the case of shell-to-beam homogeniza-
tion, this matrix takes the form [21]: 𝐮௜ = 𝐇௜𝛆௜. (1)

in which 𝑢 is a displacement vector, and ε is a strain vector, and the 𝐻௜ matrix, 
adopted for a shell RVE model, can be derived: 

⎣⎢⎢
⎢⎡𝑢௫𝑢௬𝑢௭𝜃௫𝜃௬ ⎦⎥⎥

⎥⎤
୧

=
⎣⎢⎢
⎢⎢⎢
⎡0 0 − ௭మଶ ௭ଶ 00 − ௭మଶ 0 0 ௭ଶ𝑧 𝑦𝑧 𝑥𝑧 ௫ଶ ௬ଶ0 0 −𝑧 0 00 −𝑧 0 0 0⎦⎥⎥

⎥⎥⎥
⎤

௜ ⎣⎢⎢
⎢⎡ 𝜀௫𝜅௫𝜅௬𝛾௫௭𝛾௬௭⎦⎥⎥

⎥⎤
௜
. (2)

It is worth noting that the above matrix applies to every node (marked in red in 
Figure 1), and that the x, y, z coordinates refer to the coordinates of all points to which the 
stiffness matrix of the entire RVE model has been condensed. 

In the final step, matrix [𝐇௜] is assemble to the matrix [𝐇௘], and then the effective 
stiffness can be computed according to the formula [21]: 

𝐇୩ = 𝐇௘் 𝐊௘𝐇𝐞ሼ𝑙𝑒𝑛𝑔𝑡ℎሽ = ⎣⎢⎢
⎢⎡𝐴ଷଷ 𝐵ଷଵ 𝐵ଷଶ 0 0𝐵ଵଷ 𝐷ଵଵ 0 0 0𝐵ଶଷ 0 𝐷ଶଶ 0 00 0 0 𝑅ସସ 00 0 0 0 𝑅ହହ⎦⎥⎥

⎥⎤ . (3)

where: 𝐴ଷଷ—tensile stiffness along longitudinal axis; 𝐷ଵଵ and 𝐷ଶଶ—bending stiffnesses 
with respect to the in-plane directions; 𝑅ସସ and 𝑅ହହ—shear stiffnesses of RVE and 𝐵ଵଷ =𝐵ଷଵ and 𝐵ଶଷ = 𝐵ଷଶ—the terms of compressive-bending coupling. 

If 𝐵ଵଷ and/or 𝐵ଶଷ are not zeros in the [𝐇௞] matrix, it means that the assumed cen-
ter axis in the homogenized RVE was not aligned with the natural axes. In such case, in 
order to determine the bending stiffness in the neutral axes, one should use the simple 
relationship to replace 𝐷ଵଵ: 
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𝐷ଵଵ∗ = 𝐷ଵଵ − 𝐵ଵଷଶ𝐴ଷଷ, (4)

and 𝐷ଶଶ: 𝐷ଶଶ∗ = 𝐷ଶଶ − 𝐵ଶଷଶ𝐴ଷଷ. (5)

2.3. Buckling Analysis 
The buckling problem solved by the finite element method consists of two steps: 

pre-buckling static analysis and nominal buckling analysis. In the first step, the global 
stiffness matrix is computed, 𝐊଴, and then the nodal forces for initial load configuration, 𝑃∗, assuming that 𝑃 = 𝜆𝑃∗, in which 𝜆 is the dimensionless load factor. After taking into 
account the boundary conditions, the finite element method system of equation is solved, 
i.e., 𝐊଴  ⋅ 𝐝∗ = 𝐏∗. (6)

The nodal displacements are represented by 𝑑∗ = 𝐊଴ି ଵ ⋅ 𝑃∗. Based on 𝑑∗, 𝑑௘∗ are 
extracted for each element. Later, the displacement gradients, 𝑔௘∗ , and generalized 
stresses, 𝑠௘∗, are determined. In the second step, the initial stress matrices for each ele-
ment are generated, i.e., 𝐊ఙ௘ (𝑠௘∗), and then for the overall structure, 𝐊஢(𝑠∗). Finally, we 
may mathematically formulate the buckling problem by the expression: [𝐊଴ + 𝜆𝐊ఙ]𝑣 = 𝟎, (7)

in which 𝜆 is the eigenvalue, while 𝑣 is the eigenvector. By solving the problem we 
determine the eigenvalues 𝜆௜ with counterpart eigenvectors 𝑣௜. In a buckling problem, 
the eigenvalue obtained is the critical load coefficient (multiplier) and the eigenvector 
determines the post-buckling deformation mode of the structure, here the RVE of the 
beam cross-section. 

2.4. Reference Model and Models with Geometric Imperfections 
In this article, the thin-walled cold-formed Z-profile that has been subjected to dif-

ferent types of buckling are analyzed. The influence of geometric imperfections on the 
local change of the effective stiffness of the Z profile was investigated using the numeri-
cal homogenization method, which is described in Section 2.2. In order to use the above 
method, it is necessary to properly define the stiffness matrix of the representative vol-
umetric element (RVE) of the thin-walled beam considered. 

For this purpose, the RVE of the Z profile with lengths of 100 mm, 150 mm, and 200 
mm was built. The cross-section of the beam was modeled as a shell structure with the 
shape and dimensions shown in Figure 2a. The model was meshed with S4 shell ele-
ments, i.e., a 4-node general-purpose shell element (see Abaqus FEA Documentation 
[26]). The mesh size was 5 mm. Thus, for a model with an elongation of 100 mm, 880 
elements were obtained (see Figure 2b); for a length of 150 mm, 1320 elements were ob-
tained, and 1760 elements were obtained for an elongation of 200 mm. The isotropic lin-
ear elastic model of steel with the following material parameters was used to describe the 
material properties: Poisson’s ratio equal to 𝜈 =  0.3 [−], and Young’s modulus equal to 
E =  210 GPa. 
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(a) (b) 

Figure 2. Z profile considered: (a) cross-section (units in mm); (b) finite element mesh with con-
densed nodes selected for a 100 mm case. 

The reference model, i.e., without geometric imperfections, was built as described 
above and no load nor boundary conditions were applied. On the other hand, in models 
with imperfections, different deformation modes were enforced to cause the cross-section 
buckling due to compression, bending about to the horizontal and vertical axis and 
shearing in the plane of the web and flanges separately. The displacements were applied 
at the reference points shown in Figure 3 to obtain the particular deformation mode. The 
reference points were located at the front and rear of the RVE, in the center of gravity of 
the cross-section. The points were shifted outwards 1 mm along the z axis. 

 
Figure 3. RVE model of the Z profile with the reference points marked in red. 

For compression-induced cross-section buckling, three elongation lengths of RVE 
(100 mm, 150 mm, and 200 mm) were analyzed. The buckling in compression was ob-
tained by applying the displacements along the z axis at the reference points. The en-
forced displacement at point RP-1 was 0.5 mm, and, at point RP-2, it was −0.5 mm. Ad-
ditionally, in both points, the displacements in the direction of the x axis, the y axis, and 
the rotation in relation to the z axis were blocked (assumed to be equal to 0). For the re-
maining cases, the RVE elongation was assumed to be 100 mm. 

While considering buckling in bending about the horizontal axis, two cases were 
analyzed due to the unequal width of the flanges: (i) the tension of the upper part of the 
cross-section and (ii) the tension of the lower part of the cross-section. In both cases, the 
displacements in the reference points along the x axis, y axis, and z axis and rotations in 
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the y axis and z axis were assumed to be 0. In contrast, the rotation about the x-axis for (i) 
case was 0.5 radians at point RP-1 and −0.5 radians at point RP-2, respectively. For (ii) 
case of bending about the horizontal axis, the rotation about the x axis for RP-1 was −0.5 
radians and for RP-2 was equal to 0.5 radians. 

The buckling for bending about the vertical axis was also considered for two load 
cases: (i) the tension of the right part of the cross-section and (ii) the tension of the left 
part of the cross-section. For variant (i), the rotation around the y axis in the reference 
point (RP-1) was assumed to be 0.5 radians and in RP-2 −0.5 radians. For variant (ii), the 
rotation around the y axis was assumed to be −0.5 radians in RP-1 and 0.5 radians in 
RP-2. The remaining displacements were blocked at the reference points in two cases. 

The next model considered the shear buckling in the plane of the web. For such 
buckling, two cases were analyzed due to the type of applied load/displacement: (i) the 
shear of the cross-section in the plane of the web and (ii) the shear in the plane of the 
flanges. In the model for (i) case, the translational displacements along the x axis and z 
axis, as well as the rotations around the x and z axes were blocked; the displacements 
along the y axis were assumed to be 0.5 mm at RP-2 and −0.5 mm for RP-1. However, for 
(ii) case, the displacements at both reference points were assumed to be equal to 0, except 
for rotation around x axis, which was equal to −0.5 radians. In the case of shear buckling, 
in the plane of the flanges, a displacement along the x axis was 0.5 mm at RP-2 and −0.5 
mm at RP-1. Displacements along y and z axes and rotations around y and z axes were 
assumed to be 0. 

3. Results 
This section presents the results obtained from numerical analyses for a thin-walled 

Z-type profile without holes and with rounded corners. The calculations examined the 
influence of buckling on the change in the local stiffness characteristics of the beam. 
Moreover, it was analyzed to what extent the elongation of the profile and the size of 
imperfections affect the reduction in individual stiffness. The elongation was from 100 
mm to 200 mm, and the size of imperfections was from 0 to 5 mm. The size of the im-
perfections is here the maximal displacement assumed for RVE due to buckling. The 
analyses were conducted for compression and bending in relation to the horizontal and 
vertical axis of the cross-section and shear in two planes, vertical and horizontal. 

First, the reference stiffness was computed and presented in Table 1 according to the 
homogenization method described in Section 2.2 [18,21]. The reference results are the one 
received for the case without buckling included. Table 1 shows the effective stiffness ob-
tained for a Z-profile with a constant mesh size of 5 mm and various elongation lengths. 
The depth of the sample’s elongation varied from 100 mm to 200 mm. Second, the cases 
with buckling included were computed. Next, the stiffness reductions in comparison to 
the reference results were computed and are shown in the tables. 

Table 1. Effective stiffness of the Z profile with a 5 mm mesh depending on the elongation (beam 
axis). 

Depth (𝐦𝐦) 𝑬𝑨 (𝟏𝟎𝟕 𝐏𝐚 𝐦𝟐) 𝑬𝑰𝒚 (𝟏𝟎𝟒 𝐏𝐚 𝐦𝟒) 𝑬𝑰𝒙 ൫𝟏𝟎𝟓 𝐏𝐚 𝐦𝟒൯ 𝑮𝒛𝒚𝑨 (𝟏𝟎𝟔 𝐏𝐚 𝐦𝟐) 𝑮𝒛𝒙𝑨 (𝟏𝟎𝟕 𝐏𝐚 𝐦𝟐) 
200 9.135 6.571 1.271 6.037 9.350 
150 9.160 6.542 1.269 7.604 1.098 
100 9.211 6.521 1.270 9.801 1.308 

3.1. Buckling due to Compression 
The changes in stiffness due to compression for the Z-type profile was computed for 

a fixed mesh with a size of 5 mm and a variable elongation from 100 mm to 200 mm. The 
influence of imperfection size on the effective stiffness was also investigated. 

The individual stiffness drops depending on the elongation and imperfection size 
for buckling modes 1 and 2 are presented in Table 2 in percentages. The first value in the 
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table for stiffness reduction applies to mode 1, while the second number (after the slash) 
is the stiffness reduction obtained for mode 2. 

Table 2. Stiffness reduction of the Z profile depending on the elongation depth (beam axis) and 
buckling mode in compression. 

Depth (𝐦𝐦) 
Size of Imper-
fections (𝐦𝐦) 

Stiffness Reduction (Mode 1/Mode 2) 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

100 
1.0 −2.22/−5.98 0.04/−0.36 −0.19/−0.71 −0.05/−0.14 −0.32/−2.44 
2.5 −9.00/−17.51 −0.27/−1.32 −1.14/−3.30 −0.31/−0.82 −1.81/−12.13 
5.0 −17.34/−26.73 −1.15/−2.81 −3.86/−7.97 −1.09/−2.78 −6.38/−30.39 

150 
1.0 −4.31/−7.23 −0.27/−0.31 −0.40/−0.94 −0.23/−0.39 −1.49/−2.72 
2.5 −14.40/−19.14 −1.17/−1.35 −2.18/−3.90 −1.33/−1.96 −8.25/−13.46 
5.0 −23.79/−28.22 −2.92/−3.13 −6.38/−9.10 −4.46/−5.89 −24.15/−33.63 

200 
1.0 −5.59/−2.71 −0.25/−0.17 −0.64/−0.22 −0.50/−0.25 −1.90/−0.90 
2.5 −16.83/−10.59 −1.26/−0.82 −2.95/−1.28 −2.47/−1.46 −10.13/−5.30 
5.0 −26.28/−19.66 −3.24/−2.25 −7.84/−4.28 −7.44/−5.04 −28.05/−17.52 

For a better illustration of the results due to buckling caused by compression, the 
decrease in compressive stiffness EA for a Z-profile with an elongation of 100 mm is 
shown in Figure 4. Additionally, in Figure 4a,b, the buckling of modes 1 and 2 obtained 
during the compression of the Z-profile are presented. 

   

(a) (b) (c) 

Figure 4. Buckling in compression for 100 mm depth: (a) mode 1; (b) mode 2; (c) plot of the stiffness 
reduction of 𝐸𝐴, depending on the size of imperfections. 

On the other hand, the buckling modes 1 and 2 for a Z-profile with an elongation of 
150 mm and a decrease in compressive stiffness (EA), depending on the size of the im-
perfection, are shown in Figure 5. 

In Figure 6, the results due to buckling caused by compression for the Z-type profile 
with a depth of 200 mm are shown. As previously, the buckling mode 1 and 2 and the 
compressive stiffness reduction (EA) depending on the size of the imperfection are pre-
sented. 
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(a) (b) (c) 

Figure 5. Buckling in compression for 150 mm depth: (a) mode 1; (b) mode 2; (c) plot of the stiffness 
reduction of 𝐸𝐴, depending on the size of imperfections. 

   
(a) (b) (c) 

Figure 6. Buckling in compression for 200 mm depth: (a) mode 1; (b) mode 2; (c) plot of the stiffness 
reduction of 𝐸𝐴, depending on the size of imperfections. 

3.2. Buckling due to Bending about the Horizontal Axis 
Buckling due to bending about the horizontal axis of the cross-section was consid-

ered for two cases: (i) the tension of the upper part of the cross-section and (ii) the tension 
of the lower part of the cross-section, because the cross-section considered has no axis of 
symmetry. For the Z-type cross-section with 100 mm elongation, the influence of the 
imperfection size on individual stiffness was investigated. The stiffness reduction due to 
bending for the (i) case is presented in Table 3 in percentages. 

Figure 7 shows the first buckling mode due to bending for case (i) (tension of the 
upper part of the cross-section) and the reduction of bending stiffness EI୶ about the 
horizontal axis depending on the size of imperfections for a Z-type profile with 100 mm 
elongation. 

Table 4 shows the stiffness drops depending on the size of imperfections for (ii), the 
case of bending about the horizontal axis, when the lower part of the cross-section is in 
tension. The results refer to the Z-type profile with 100 mm elongation. 
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(a) (b) 

Figure 7. Buckling due to bending about the horizontal axis, top flange in tension ((i) case) for a 
depth of 100 mm: (a) mode 1; (b) plot of the stiffness reduction of 𝐸𝐼௫, depending on the size of 
imperfections. 

Table 3. Stiffness reduction of a Z profile with an elongation of 100 mm due to bending about the 
horizontal axis for (i) case, depending on the size of imperfections. 

Size of Imperfections (𝐦𝐦) 
Stiffness Reduction 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

1.0. −2.47 −1.79 −1.66 −0.21 −0.79 
2.5 −10.85 −7.91 −7.99 −1.19 −4.57 
5.0 −21.95 −16.40 −18.90 −3.67 −14.59 

Buckling mode 1 for a Z profile with 100 mm elongation due to bending about the 
horizontal axis and tension of the lower part of the cross-section (case (ii)) is shown in 
Figure 8. The plot of the reduction in the bending stiffness of EI୶ depending on the im-
perfection size is shown in Figure 4. 

 
 

(a) (b) 

Figure 8. Buckling due to bending about the vertical axis for case (ii) (tension of the lower part of 
the cross-section), for a depth of 100 mm: (a) mode 1; (b) plot of the stiffness reduction of 𝐸𝐼௫, de-
pending on the size of imperfections. 
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Table 4. Stiffness reduction of Z profile with an elongation of 100 mm due to bending about the 
horizontal axis for case (ii), i.e., the tension of the lower part of the cross-section, depending on the 
size of imperfections. 

Size of Imperfections (𝐦𝐦) 
Stiffness Reduction 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

1.0 −3.51 −3.64 −4.08 −1.22 −0.30 
2.5 −11.76 −13.89 −14.06 −6.57 −1.54 
5.0 −20.67 −26.44 −24.34 −18.37 −4.73 

3.3. Buckling due to Bending about the Vertical Axis 
Buckling due to bending about the vertical axis was considered for two cases: (i) the 

tension of the right part of the cross-section and (ii) the tension of the left part of the 
cross-section. The influence of the size of an imperfection caused by bending on the de-
crease of individual stiffness for a Z-type cross-section with an elongation of 100 mm was 
analyzed. Table 5 shows the stiffness reduction due to bending about the vertical axis, 
i.e., case (i). 

Table 5. Stiffness reduction of Z profile with an elongation of 100 mm due to bending about the 
vertical axis for (i) case, depending on the size of imperfections. 

Size of Imperfections (𝐦𝐦) 
Stiffness Reduction 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

1.0 −1.04 −2.53 −0.95 −0.28 −0.08 
2.5 −4.70 −11.11 −4.64 −1.63 −0.45 
5.0 −10.22 −22.83 −11.48 −5.43 −1.36 

Figure 9 shows the first buckling mode for case (i), i.e., bending about the vertical 
axis, when the right part of the cross-section is in tension and the plot of the bending 
stiffness of the 𝐸𝐼௬ reduction depends on the size of imperfections for the Z profile with 
an elongation of 100 mm. 

 
 

(a) (b) 

Figure 9. Buckling due to bending about the horizontal axis for (i) case, for a depth of 100 mm: (a) 
mode 1; (b) plot of the stiffness reduction of 𝐸𝐼௬, depending on the size of imperfections. 

The stiffness reduction for a Z-profile with 100 mm elongation due to bending about 
the vertical axis for the case (ii), depending on the value of the imperfection, are pre-
sented in Table 6. 

In Figure 10, the results due to bending about the vertical axis when the left part of 
the cross-section is in tension (case (ii)) for a Z-profile with a depth of 100 mm are pre-
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sented. Figure 10a presents buckling mode 1. The plot of the reduction in the bending 
stiffness of 𝐸𝐼௬ depending on the size of imperfection is demonstrated in Figure 10b. 

 
 

(a) (b) 

Figure 10. Buckling due to bending about the vertical axis for case (ii), for a depth of 100 mm: (a) 
mode 1; (b) plot of the stiffness reduction of 𝐸𝐼௬, depending on the size of imperfections. 

Table 6. Stiffness reduction of the Z profile with elongation of 100 mm due to bending about the 
vertical axis for (ii) case, depending on the size of imperfections. 

Size of Imperfections (𝐦𝐦) 
Stiffness Reduction 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

1.0 −0.54 −1.30 −0.57 −0.10 −0.06 
2.5 −2.32 −5.53 −2.56 −0.56 −0.34 
5.0 −4.83 −10.86 −5.75 −1.71 −1.01 

3.4. Buckling due to Shear 
Buckling in shear was analyzed for two variants of load. The shear of the 

cross-section in the plane of the web was labeled as case (i), while the shear in the plane of 
the flanges was labeled as case (ii). For these shear variants, the influence of the imper-
fection size and the method of implementing shear on the change of the stiffness of the 
Z-profile with 100 mm elongation were investigated. 

Table 7 shows the individual stiffness reduction for shearing in the web plane, i.e., 
case (i). The shearing effect was obtained by two methods. Method I was achieved by 
applying translational displacements. Method II was obtained by applying rotational 
displacements. The values from both methods are shown in Table 7, separated by a slash. 

Table 7. Stiffness reduction of the Z profile with elongation of 100 mm due to shearing for case (i), 
depending on the size of imperfections. 

Size of Imperfections (𝐦𝐦) Stiffness Reduction (Method I/Method II) 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 
1.0 −2.30/−2.39 −0.02/−0.04 −0.25/−0.26 −0.09/−0.09 −1.60/−1.68 
2.5 −8.34/−8.53 −0.25/−0.28 −1.28/−1.34 −0.43/−0.43 −6.65/−7.12 
5.0 −14.87/−15.03 −0.56/−0.60 −3.44/−3.47 −1.26/−1.24 −15.18/−16.68 

Figure 11 shows the buckling of mode 1 due to shearing in the web plane (case (i) of 
shearing) and the shear stiffness reduction of 𝐺௭௫𝐴 depending on the size of imperfec-
tions for the Z-profile with an elongation of 100 mm and method I, i.e., shear caused by 
displacement. 
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(a) (b) 

Figure 11. Buckling due to shearing for case (i) for the Z profile with an elongation of 100 mm: (a) 
mode 1; (b) plot of the stiffness reduction of 𝐺௭௫𝐴, depending on the size of imperfections. 

The decrease in stiffness due to buckling from shearing in the plane of the flanges, 
i.e., case (ii), the shearing case for the Z profile with an elongation of 100 mm, depending 
on the imperfection value, is presented in Table 8. As has been previously done, two 
ways of obtaining shearing deformation were applied, i.e., method I and method II were 
used. In method I, the shearing is caused by applying translational displacements, and, in 
method II, the shearing is obtained by applying rotational displacements. 

Table 8. Stiffness reduction of the Z profile with an elongation of 100 mm due to shearing for case 
(ii), depending on the size of imperfections. 

Size of Imperfections (𝐦𝐦) 
Stiffness Reduction (Method I/Method II) 𝑬𝑨 (%) 𝑬𝑰𝒚 (%) 𝑬𝑰𝒙 (%) 𝑮𝒛𝒚𝑨 (%) 𝑮𝒛𝒙𝑨 (%) 

1.0 −1.66/−1.71 −2.05/−1.91 −1.74/−1.70 −1.18/−1.28 −0.11/−0.14 
2.5 −7.11/−6.89 −8.55/−7.49 −7.46/−7.04 −5.25/−5.53 −0.82/−0.91 
5.0 −15.00/−14.47 −18.31/−16.21 −15.16/−14.03 −12.48/−12.99−2.77/−3.00 

In Figure 12, buckling mode 1 and a plot of the stiffness reduction of 𝐺௭௬𝐴 caused 
by shearing in the plane of the flanges (case (ii)) are presented for the Z profile with 
elongation of 100 mm and method I, i.e., shear caused by applying translational dis-
placements. 

 
 

(a) (b) 

Figure 12. Buckling due to shearing for case (ii), for a depth of 100 mm: (a) mode 1; (b) plot of the 
stiffness reduction of 𝐺௭௬𝐴, depending on the size of imperfections.  
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4. Discussion 
The systematic numerical studies of homogenization adopted on an cold-formed 

unsymmetric beam profile to obtain its representative stiffnesses allows a comparison of 
the results between different buckling modes used, as well as the size of imperfections 
applied, or the method used to determine a particular deformation. 

While analyzing buckling due to compression, see Table 2, it appeared that the first 
two deformation modes may be important, because their eigenvalues were similar, i.e., 
the difference between them was no more than 10%. The first mode has a more global 
shape, with one extreme at the web, while the second mode is more local, that is, it has 
two extremes at the web. The direct values of stiffness reductions are different when 
comparing mode 1 and mode 2; see Table 2. However, it should be noted that the factor 
of imperfection (Δ𝑑/𝐿) in mode 1 and mode 2 are different. Δ𝑑 is the relative displace-
ment, and 𝐿 is the elongation depth. For instance, in mode 1, the factor is equal to 1/100 
for 1 mm, and, for mode 2, it is equal to 2/100 also for 1 mm. Thus, the comparable results 
in our summary (Figure 2) for the 𝐸𝐴 is mode 1 for a 2.5 mm imperfection and mode 2 
for a 5.0 mm imperfection. Those two values are equal to 17.52% and 17.34%, respec-
tively, and are close. A similar effect may be observed for other elongation depths. It is 
worthwhile to note that, for 150 mm, the deformations for mode 1 and mode 2 are 
flipped. They are very much similar, however, in the 150 mm case; mode 1 has two ex-
tremes, and mode 2 has three extremes, while, in the 200 mm case, mode 1 has three ex-
tremes, and mode 2 has two extremes. If one would analyze the influence of the size of 
imperfections on 𝐸𝐴 stiffness reduction from an engineering point of view, it is ap-
proximately linear, if the imperfection factor is taken into consideration, as is presented 
in Figures 3–5. 

When analyzing buckling due to bending about the horizontal axis, two cases were 
considered, that is, the top flange in tension and the lower flange in tension. The upper 
flange has a 60 mm width, while the lower one has a 40 mm width. Such a width differ-
ence resulted in obtaining different modes; in case (i), the extremes were achieved in the 
lower flange, and in case (ii), the extremes were obtained in the upper flange. The stiff-
ness reductions of 𝐸𝐼௫ were also different, and much larger reductions were achieved for 
case (ii). For case (i), the stiffness reductions were from 1.66% to 18.9%, depending on the 
size of imperfections assumed (1.0, 2.5, or 5.0 mm), while for case (ii), the reductions were 
from 4.08% up to 24.34%. Stiffness reductions in case (ii) were from 1.3 up to 2.5 times 
larger than in case (i). This effect could be expected because, in case (ii), the deformation 
extremes are in the compressed flange, while in case (i), they occur in a less important 
flange stiffener. 

When analyzing buckling due to bending about the vertical axis, two cases were 
considered, that is, the left stiffener in compression and the right stiffener in compression. 
Both stiffeners have the same height, i.e., 20 mm. Difference in flanges width resulted in 
obtaining different modes; see Figures 8 and 9; in both cases, the extremes were similarly 
located on the compressed stiffeners. The stiffness reductions of 𝐸𝐼௬ were also different; 
see Tables 5 and 6; much larger reductions were achieved for case (i). For case (i), the 
stiffness reductions were from 2.53% to 22.83%, depending on the size of imperfections 
assumed (1.0, 2.5 or 5.0 mm), while for case (ii), the reductions were from 1.3% up to 
10.86%. The stiffness reductions for case (i) were approximately twice as large as for case 
(ii). This effect could be expected because, in case (i), the stiffener supports the larger 
width flange and because its deterioration due to imperfection decreases the 𝐸𝐼௬ stiff-
ness more than in case (ii). 

When analyzing buckling due to shearing, two cases were considered, that is, 
shearing in the 𝑧𝑥 plane and shearing in the 𝑧𝑦 plane, see Figure 1. Moreover, for each 
case, two methods of applying shear were considered. For shearing in the 𝑧𝑥 plane 
(shearing web), the results of two methods give values with a negligible difference; see 
Figure 10. For instance, for 𝐺௭௫𝐴 and a 1.0 mm imperfection, the reduction percentages 
are 1.60% and 1.68%, which gives a 5% difference. The diagonal deformation of the web 
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was achieved. For shearing in the 𝑧𝑦 plane (shearing flanges), the results of two methods 
also give values with a negligible difference; see Figure 11. For instance, for 𝐺௭௬𝐴 and a 
2.5 mm imperfection, the values are 5.25% and 5.53%, which gives a 5.3% difference; see 
Tables 7 and 8. The diagonal deformation of the flange was also achieved. The conclusion 
from shearing analyses is that both methods for 𝑧𝑥 and 𝑧𝑦 plane shearing, are equally 
good. Furthermore, as previously, from an engineering point of view, the influence of the 
size of imperfections on the 𝐺௭௬𝐴 or 𝐺௭௬𝐴 stiffness reduction is approximately linear. 

In this paper, we presented a methodology on how to compute the deteriorated 
characteristics of a beam section due to several types of imperfections. The methodology 
requires solving several buckling problems, with different loads and numerical homog-
enization [18,21] for each case. Despite a relatively small time cost, it requires a lot of 
modeling work, i.e., defining various boundary conditions, building separate models, 
etc. According to the results of our calculations presented in Section 3, this effort can be 
limited to modeling only the case of bending about the horizontal axis and shearing of 
flanges. Bending about the horizontal axis serves for obtaining all stiffness reductions 
apart from the shearing of the flanges. Therefore, the reduction of 𝐸௫𝐼 would be exact 
from the horizontal bending case. The reduction of 𝐺௭௬𝐴 would be exact from the 
shearing of the flanges. The rest of the stiffness reductions would be taken as the ap-
proximated values from the horizontal bending case. Such an approach would reduce the 
effort needed to determine the characteristics of a beam section due to various types of 
imperfections. 

The conclusions presented applies to the cross-sections analyzed. To adopt those 
findings to another types of cross-section, verification simulations are recommended to 
be performed. Another limitation is that the buckling results depend on the ratio between 
the dimensions of flanges/webs and its extrusion, while considering a RVE approach. 

5. Conclusions 
In the paper, a methodology for numerically determining the deteriorated proper-

ties of a beam section due to imperfections was presented. Thin-walled Z-type beams 
with variable elongation and a different load pattern were analyzed. The analyses con-
ducted use a method of numerical shell-to-beam homogenization by using the principle 
of the elastic equilibrium of the strain energy. 

In particular, this paper shows what kind of local imperfections deteriorate the 
effective stiffness of the cross-section, which so far has not been taken into account. The 
results presented in the study directly help to build engineering intuition without 
conducting complex finite element computations. Moreover, the algorithm proposed 
may serve to compute the effective stiffnesses for other cross-sections, such as a C or 
Sigma profile. In this research paper, first, the homogenization method was used to cal-
culate the mechanical parameters of an undeformed beam (reference case). Next, in the 
second part, the buckling analyses for the RVE model were subjected to various types of 
loading (compression, bending in reference to two axes, and shear in two planes). Finally, 
the obtained buckling modes were used to calculate the individual stiffness drops. In the 
end, an alternative, faster, and simplified approach was proposed that gave satisfactory 
results compared to the full methodology. 
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