
 
 

 

 
Materials 2023, 16, 4897. https://doi.org/10.3390/ma16144897 www.mdpi.com/journal/materials 

Article 

Optimal Design of Bubble Deck Concrete Slabs: Serviceability 
Limit State 
Tomasz Gajewski 1, Natalia Staszak 2 and Tomasz Garbowski 3,* 

1 Institute of Structural Analysis, Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland;  
tomasz.gajewski@put.poznan.pl 

2 Doctoral School, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland;  
natalia.staszak@up.poznan.pl 

3 Department of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50,  
60-627 Poznan, Poland 

* Correspondence: tomasz.garbowski@up.poznan.pl 

Abstract: In engineering practice, one can often encounter issues related to optimization, where the 
goal is to minimize material consumption and minimize stresses or deflections of the structure. In 
most cases, these issues are addressed with finite element analysis software and simple optimization 
algorithms. However, in the case of optimization of certain structures, it is not so straightforward. 
An example of such constructions are bubble deck ceilings, where, in order to reduce the dead 
weight, air cavities are used, which are regularly arranged over the entire surface of the ceiling. In 
the case of these slabs, the flexural stiffness is not constant in all its cross-sections, which means that 
the use of structural finite elements (plate or shell) for static calculations is not possible, and there-
fore, the optimization process becomes more difficult. This paper presents a minimization proce-
dure of the weight of bubble deck slabs using numerical homogenization and sequential quadratic 
programming with constraints. Homogenization allows for determining the effective stiffnesses of 
the floor, which in the next step are sequentially corrected by changing the geometrical parameters 
of the floor and voids in order to achieve the assumed deflection. The presented procedure allows 
for minimizing the use of material in a quick and effective way by automatically determining the 
optimal parameters describing the geometry of the bubble deck floor cross-section. For the optimal 
solution, the concrete weight of the bubble deck slab was reduced by about 23% in reference to the 
initial design, and the serviceability limit state was met. 

Keywords: lightweight structures; bubble deck concrete slabs; numerical homogenization; weight 
minimization; sequential quadratic programming 
 

1. Introduction 
Over the last few decades, concrete structures, in particular prefabricated reinforced 

concrete structures, have gained popularity and found wide application in many con-
struction sectors around the world [1]. They are used not only in industrial, commercial, 
or residential facilities, but also in infrastructural construction. Prefabricated reinforced 
concrete elements, among others, mainly include columns, foundation footings, and re-
taining walls, as well as prefabricated walls with window and door openings. However, 
the most commonly used prefabricated concrete elements are girders and floor slabs [2]. 

This type of construction has numerous advantages, including: (a) saving formwork, 
(b) high durability and resistance of the structure, (c) high strength, (d) short construction 
time, (e) quality standards, and (f) reducing the amount of work on construction sites. In 
addition, prefabricated structures can be shaped in many ways using modern technolo-
gies and adapted to local conditions that occur in the designed facilities. Moreover, during 
the production stage, it is possible to make cuts and openings which allow for carrying 
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out installation, e.g., pipes or cables after mounting the element at the site. It is extremely 
important to have already planned and anticipated all required openings in the design 
stage. On the other hand, prefabricated elements also have disadvantages. One of the main 
disadvantages is their cost, which consists of production, transport, and the need for 
cranes for their assembly [3]. However, the latter is not a problem, because on large con-
struction sites, in which such structures are used, heavy equipment is available to unload 
and assemble them. 

The main idea of the floor technology has remained unchanged in its general concept 
for years. Each type of ceiling should meet specific requirements that determine the selec-
tion of the appropriate structure and technology [4]. Technical requirements, including 
thermal and acoustic insulation, adequate strength, stiffness, fire resistance, and durabil-
ity, have the greatest impact. Another important aspect is economic requirements, which 
include minimization of costs during construction and the project design stage. In the case 
of large spans between supports, prefabricated floors are used. The basic types of such 
floors are solid slabs, filigree slabs, multi-hole slabs, and TT double-rib slabs [5]. In such 
structures, an important aspect is to increase the span, and at the same time, reduce the 
weight of the panels [6]. Therefore, lightweight concrete structures are increasingly used, 
e.g., channel slabs or bubble deck slabs. This approach aims to eliminate the concrete that 
does not fulfill any structural functions to reduce the weight, and thus, the dead load [7,8]. 

Over the last few decades, many numerical models have been developed to represent 
the global behavior of prefabricated concrete structures and to understand their mechan-
ical behavior. These models serve as valuable tools for simulating and analyzing the struc-
tural response of prefabricated elements, enabling engineers to evaluate their perfor-
mance under various loading conditions and optimize their design. For instance, the au-
thors of [9] presented a full 3D model of prefabricated bridge slabs for the purpose of 
modeling their non-linear behavior using the constitutive model of concrete damage plas-
ticity. In turn, the bending behavior of composite slabs was analyzed by Tzaros et al. [10]. 
Gholamhossein et al. [11] proposed a three-dimensional solid finite element model to in-
vestigate the connection between concrete and steel. Information regarding the puncture 
resistance of concrete slabs can be found in [12]. Using the finite element method (FEM), 
it becomes possible to analyze structures with complex shapes and geometries, and to 
gain insight into the non-linear behavior of concrete and steel [13–15]. However, the de-
tailed modeling of three-dimensional prefabricated slabs requires a lot of work, specialist 
knowledge, as well as the use of specific software, and it is very time-consuming in terms 
of calculations. The solution to the problem may be the use of one of the homogenization 
methods. 

Homogenization is a mathematical technique used to analyze and model the behav-
ior of heterogeneous materials or structures. It aims to capture the effective properties of 
an entire material or structure, taking into account its constituent materials or compo-
nents. In the context of construction and structural calculations, homogenization refers to 
the simplification or adoption of uniform material or structure properties in order to fa-
cilitate calculations. For materials with an irregular structure or composition, simplifica-
tions can be used, where the material is treated as having uniform properties such as 
strength, stiffness, and density. Homogenization can also refer to simplification in struc-
tural analysis, where complex models of structural elements or details are replaced by 
simpler models that account for similar structural behavior. One can distinguish, among 
others, the method of periodic homogenization [16], non-linear homogenization [17], or 
the method of multi-scale homogenization based on genome mechanics [18]. A slightly 
different approach can be found in the work of Garbowski and Marek [19], where a 
method based on reverse analysis was used. On the other hand, in [20], a method of ho-
mogenization based on strain energy for sandwich panels with a honeycomb core was 
presented. Furthermore, Biancolini developed a method of strain energy equivalence be-
tween the simplified model and the representative volumetric element (RVE) model [21]. 
This method was then extended in [22]. Homogenization may introduce some 
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simplifications and approximations, so its use should be carefully assessed in the context 
of a specific project and the fulfillment of relevant load-bearing and safety requirements. 

Homogenization methods are also used in structural optimization analyses. This re-
fers to the process of designing and modifying a building or structural elements to achieve 
the best possible results in terms of strength, cost-effectiveness, and energy efficiency. In 
addition, structural optimization is a complex process that requires consideration of mul-
tiple parameters and various engineering disciplines. It includes the integration of 
knowledge from structural engineering, materials science, mechanical engineering, and 
other relevant fields. The goal of the optimization is to find the best compromise between 
individual design requirements, so that the construction is as efficient, durable, and eco-
nomical as possible, taking into account factors such as structural loads, material proper-
ties, construction techniques, and environmental impacts. This process may include the 
analysis of various scenarios, e.g., changing the geometry, materials, and configuration of 
structural elements to find the most suitable solution. The use of advanced tools such as 
structural analysis software and computer simulations can greatly facilitate the optimiza-
tion process and help in obtaining optimal design solutions. These tools allow engineers 
to model and simulate the behavior of the structure under various conditions, accurately 
predict its performance, and evaluate different design alternatives. 

Many studies have been conducted that provide information on the optimization of 
building construction, e.g., prefabricated elements, steel, or wooden structures. Sotirop-
oulos et al. presented a conceptual design method based on topology optimization using 
prefabricated structural elements [23]. The hybrid optimization method was used to opti-
mize cellular beams in [24]. The optimization of thin-walled cross-sections was shown in 
[25]. Furthermore, the work by Sojobi et al. [26] presented a multi-objective optimization 
of a prefabricated carbon fiber-reinforced polymer (CFRP) composite sandwich structure. 
Additionally, Xiao and Bhola [27] presented the design of prefabricated building systems 
using building information modeling (BIM) technology and structural optimization. In 
the work by Xie et al. [28], a genetic algorithm was utilized for optimal planning of pre-
fabricated construction projects. 

In addition, many studies have been performed on the plates analyzed in this publi-
cation. Abishek and Iyappan investigated the bending behavior of a reinforced FRP (fiber-
reinforced polymer) bubble deck [29]. Additionally, in [30], the evaluation of the plasticity 
of reinforced concrete structures with voids was analyzed. Experimental testing of slabs 
with modified openings was discussed in [31], and the study of concrete using plastic 
waste applied to hollow plates was presented in [32]. John et al. [33] demonstrated the 
bubble deck behavior using a model in ANSYS. They analyzed service load deflection, 
crack pattern, concrete stress distribution, and ultimate load capacity. 

In our previous paper [34], a sensitivity study regarding the main bubble deck pa-
rameters was performed, i.e., it was checked how the changes of a single engineering pa-
rameter (such as bubble dimensions, class of concrete, reinforcement diameter, number of 
bars, etc.) influence the particular effective stiffnesses of the BD230 and BD340 slabs. In 
the current paper, the optimal design for a particular slab is sought by employing the 
minimization technique. According to the prior state-of-the-art review, there are no stud-
ies on the optimal design of the bubble deck plate, although this slab technology has many 
advantages. Determining the optimal design of the bubble deck slab through the numeri-
cal homogenization technique is the main novelty of the paper. 

This paper presents an algorithm for the optimal design of bubble deck construction 
in order to minimize the amount of concrete and ensure that the permissible deflection 
arrow of the structure in the serviceability limit state is not exceeded. To simplify the 
model and speed up the analysis, the numerical homogenization method based on the 
equivalence of the strain energy between the simplified shell model and the three-dimen-
sional reference RVE bubble deck model was used. The analyzed concrete slab contains 
evenly distributed voids over the entire surface and both upper and lower steel reinforce-
ment, which increases the complexity and time of the calculations. Therefore, the original 
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numerical homogenization method, initially developed for shell structures, was modified. 
In the work, an extension of the method was used to simultaneously include continuum 
and truss elements, similar to in [34,35]. 

One of the most important limitations of this study is that currently, the stress anal-
ysis cannot be included while using the homogenization technique considered [21,22]. 
Therefore, the ultimate limit state is beyond the scope of the current study. Another limi-
tation is that the results from optimization with respect to the parameters of continuous 
domains may not be straightforward to be implemented in the industry. The use of con-
crete will be less in the optimal solution, but it is likely that bubble deck voids will be more 
expensive than the traditional bubble deck solution. 

2. Materials and Methods 
2.1. Lightweight Concrete Slabs 
2.1.1. Voided Floor Slabs 

The expression “voided floor slabs” refers to a special type of construction where the 
concrete slab contains a system of regular hollows or empty spaces inside. The hollows 
may have various shapes, such as spheres, cylinders, clovers, etc. In addition, they can be 
arranged in a specific pattern or grid. Voided floor slabs are used to achieve greater effi-
ciency in terms of material use and to reduce the weight on the structure, while ensuring 
the required strength and performance of the floor structure. One of the most common 
types of voided floor slabs is the bubble-type ceiling. 

The bubble deck is a modern ceiling solution compared to traditional slabs, in which 
the ineffective concrete in the middle of the cross-section is replaced by voids. This floor 
slab was invented in the 1990s by Danish engineer Jorgen Breuning [36]. It is used in resi-
dential, office, industrial, and utility buildings. In addition, the bubble deck ceiling is used 
in factories, parking structures, schools, and hotels. 

Bubble deck has spherical or elliptical voids [37] evenly distributed over the entire 
surface, without changing the two-way action of the element. This solution allows to re-
duce the amount of concrete by 33% and the price by 30% compared to traditional solid 
slabs with the same parameters [38]. One of the main differences between solid slabs and 
bubble deck is their shear resistance [39]. In addition, by adjusting the appropriate rein-
forcement mesh and hole geometry, an optimized concrete structure can be achieved, al-
lowing for the simultaneous maximum utilization of both moment and shear zones. 

The height of such slabs can achieve up to 600 mm, which allows for a span of up to 20 m. On the other hand, the diameter of the bubble made of HDPE (high-density poly-
ethylene) varies between 180 and 450 mm, depending on the designed thickness of the 
slab. The HDPE material used comes from recycled plastic waste. Therefore, the above 
solution contributes to the reduction of pollution and has a positive impact on environ-
mental protection. However, the distance between the individual voids in the bubble deck 
system must be at least 1/9 of the bubble diameter. This requirement ensures adequate 
structural integrity and optimal load distribution in the floor slab. By keeping the distance 
between voids to a minimum, the system can effectively reduce the weight of the struc-
ture, while providing sufficient strength and stability. The voids are fixed in special steel 
baskets between the upper and lower reinforcements of the plate to prevent their displace-
ment during concrete pouring [40,41]. In addition, the slab is directly connected to con-
crete columns or walls in situ without any beams, providing a wide range of structural 
costs and benefits. This eliminates the need for additional structural elements, simplifies 
the construction process, and allows for more flexible design options. Such a direct con-
nection between the slab and columns or walls enhances the structural efficiency and op-
timizes the construction costs. 

There are three methods of manufacturing the bubble deck: (i) the in situ approach—
Figure 1a, (ii) semi-prefabricated elements (Filigree element)—Figure 1b, and (iii) prefab-
ricated panels—Figure 1c [42]. In the case of the in situ approach (i), the slabs are made 
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onsite at the place of their installation. Voids are placed in specific places between the 
bottom and top reinforcements of the floor. In the next step, the finished modules are 
placed on the prepared formwork. Then, the slab is concreted. It is worth noting that this 
solution is very effective in buildings where the floor is not flat, e.g., there is a domed or 
curved ceiling. In the case of approach (ii), the deck is a semi-prefabricated bubble deck. 
This means that elements are created in the production plant, which then require addi-
tional concreting at the construction site. This is a combination of methods (i) and (iii). The 
lower part of the ceiling, which is also the permanent formwork, is in the form of a con-
crete slab with a thickness of approximately 6 cm. In addition, it has both lower and upper 
reinforcements, with spaced voids. Then, the whole element is transported to the con-
struction site and concreted after moving to the appropriate place. In contrast, approach 
(iii) deals with components that are fully manufactured. The finished prefabricated ele-
ments are transported to the construction site. This solution partially limits the ability of 
the plates to function as bi-directional. The solution to this problem may be the proper 
design of the connection between the prefabricated slabs, which will enable the use of 
prefabricated elements as two-way floors, similar to approaches (i) and (ii). 

(a) 

 

(b) 

 

(c) 

 

Figure 1. Types of bubble deck: (a) in situ element, (b) semi-prefabricated element, and (c) fully 
prefabricated element. 

The bubble deck is generally designed using conventional solid-ceiling design meth-
ods, in accordance with applicable international and local design standards. The above 
floor system is a true bidirectional monolithic slab and behaves as a solid slab in both 
elastic and plastic modes. This means it can effectively carry and distribute loads in a 
manner similar to traditional solid slabs, ensuring structural integrity and performance. 
Besides, it mainly uses two analysis methods in its design, such as the linear elastic and 
yield line methods. Thanks to the optimized geometry and spherical bubbles, every part 
of the concrete in the slab is actively involved and relevant in the calculation of different 
types of forces. 

2.1.2. Serviceability Limit State of Bubble Deck Concrete Slabs 
During the design and analysis of structures, it is important to check two main limit 

states to ensure the safety and strength of the structure: the ultimate limit state (ULS) and 
the serviceability limit state (SLS). The first one concerns the assessment of the load capac-
ity of the structure and checking whether it is able to withstand loads, in accordance with 
the adopted standards, building regulations, and design requirements. For different types 
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of structures, such as floors, columns, foundations, bridges, etc., the ULS refers to the eval-
uation of their strength in response to various forces, such as compression, bending, ten-
sion, bending moments, shear forces, etc. The strength of the bubble deck is typically de-
termined by structural analysis and calculation, taking into account factors such as the 
flexural strength, shear capacity, and the ability to efficiently distribute loads. 

The serviceability limit state (SLS) refers to the conditions in which the structure can 
be operated without unacceptable deformations or damage that may affect its functional-
ity and safety. In the case of bubble boards, the key aspect is to ensure that the bubbles 
inside the board are stable and do not undergo deformation or damage that could affect 
the load capacity and stiffness of the board. The SLS covers various aspects, including 
deflections and cracks. In the case of slabs, there are certain permissible deflection limits 
that should not be exceeded to ensure the stability and functionality of the structure. Ex-
cessive deflections can lead to improper functioning of finishing elements, problems with 
water drainage, or deterioration of interior aesthetics. Usually, when assessing the SLS, it 
is recommended to examine the cracks to determine their nature, size, and their impact 
on the safety and functionality of the structure. 

In this work, analyses of the optimization of the bubble deck ceiling in terms of the 
SLS were carried out. It was assumed that the maximum plate deflection cannot exceed 
the permissible value equal to 1/250 of the span between supports, according to [43], for 
the quasi-permanent load case. In addition, it was assumed that the floor is located in an 
office building and is subjected to the following loads, evenly distributed over the entire 
surface of the slab. One of them is the useful load with a characteristic value of: 𝑞 =3 kN/m  (according to [44] for office rooms). In addition, it was assumed that an equiva-
lent load from partition walls equal to: 𝑞 = 0.8 kN/m , and a permanent load outside the 
weight of the slab structure with a value of: 𝑔 = 1.5 kN/m , are applied to the ceiling. 
The ceiling weight is a variable value and depends on the geometrical parameters of the 
slab and bubble cross-section, so it was directly taken into account in the cost function of 
the optimization algorithm. The deflection arrow was determined for the case of quasi-
permanent loads in the serviceability limit state; therefore, the factors reducing the load 
values according to [44] were applied. 

2.2. Numerical Homogenization of the Slab 
In the following work, the method of numerical homogenization based on the equiv-

alence of strain energy between the three-dimensional reference model and the simplified 
shell model was used [19,34,35,45–48]. The above method has already been adapted to 
prefabricated concrete slabs reinforced with spatial trusses [35] and reinforced slabs with 
voids, such as the bubble deck [34]. This approach uses the classical formulation of the 
displacement-based finite element method, extracting individual values for internal 
nodes—subscript “i”, and external nodes—subscript “e”: 𝐊 𝐮 = 𝐅 →   𝐊 𝐊𝐊 𝐊 𝐮𝐮 = 𝐅𝟎 . (1)

where: 𝐊 is the stiffness matrix, u is a displacement vector of nodes, and 𝐅 is the external 
nodal load vector. 

For this purpose, it is necessary to separate a representative volume element (RVE) 
from the model and perform static condensation. Condensation is the elimination of sec-
ondary degrees of freedom; in this case, internal nodes. Then, it is necessary to redefine 
the stiffness matrix with a reduced number of degrees of freedom only at the external 
nodes (see Figure 2a). 
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(a) (b) 

Figure 2. RVE: (a) external (in red color) and internal nodes and (b) parametrized for optimization 
purposes. 

Additionally, the presented method of homogenization uses the relationship be-
tween the total energy of elastic deformation stored in the system after static condensation 
and the work of external forces on appropriate displacements: 𝐸 = 12 𝐮  𝐅  (2)

The homogenization method, as in [34,35], has been modified here to include only 
translational degrees of freedom (for two types of finite elements used in the models—
truss and continuum). Therefore, the relationship between the generalized strain con-
stants and the location of the external RVE nodes is expressed by the following transfor-
mation: 

𝑢𝑢𝑢 = 𝑥 0 𝑦 2⁄ 𝑧 2⁄ 0 𝑥𝑧 0 𝑦𝑧 2⁄0 𝑦 𝑥 2⁄ 0 𝑧 2⁄ 0 𝑦𝑧 𝑥𝑧 2⁄0 0 0 𝑥 2⁄ 𝑦 2⁄ − 𝑥 2⁄ − 𝑦 2⁄ − 𝑥𝑦 2⁄ ⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝜀𝜀𝛾𝛾𝛾𝜅𝜅𝜅 ⎦⎥⎥

⎥⎥⎥
⎥⎤ , (3)

Using the definition of the elastic strain energy for a discrete model: 𝐸 = 12 𝐮  𝐊 𝐮 = 12 𝛜  𝐀  𝐊 𝐀  𝛜 . (4) 

Taking into account the finite element model including bending, tension, and transverse 
shear, the elastic internal energy for the plate or shell can be expressed as: 𝐸 = 12 𝛜  𝐀  𝛜 {𝑎𝑟𝑒𝑎} (5) 

Thanks to this, the stiffness matrix for the homogenization method can be extracted from 
the discrete matrix: 𝐀 = 𝐀  𝐊 𝐀𝑎𝑟𝑒𝑎 . (6) 
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Then, after appropriate transformations, we can obtain the stiffness matrix 𝑨 , which 
is the ABDR matrix, consisting of all the required compression, bending, and shear stiff-
nesses: 

𝐀 = 𝐀  × 𝐁  × 0𝐁  × 𝐃  × 00 0 𝐑  ×  (7)

More information on numerical homogenization based on strain energy equivalence 
can be found in [19,34,35,45–48]. 

The design parameters, �̅�, that were used to determine the representative RVE for a 
specific design of the bubble bridge slab in the analyzed optimization problem are shown 
in Figure 2b. The assumed designed parameters read: �̅� = {𝐵, 𝐻, 𝑑 , 𝑑 } (8)

in which 𝐵 is the width and length of the RVE concrete unit, 𝐻 is the height of the RVE 
concrete unit, and 𝑑 , 𝑑  are the dimensions of the ellipsoidal void, height, and horizontal 
diameter, respectively. 

2.3. Study Framework and Optimization Problem Definition 
In everyday challenges, structural engineers tackle various problems, and one of the 

most common is the optimal design of the structure. In this paper, the optimal design of 
the bubble deck slab in regard to not exceeding the serviceability limit state (SLS) and 
minimal use of the concrete is analyzed. The problem is not trivial since the bubble deck 
slabs have variable cross-sections. In regions with full concrete cross-sections, the plate 
has a higher stiffness, while for bubble void regions, the plate is less stiff. The properties 
of the plate periodically vary across the span, which makes it difficult to calculate the dis-
placement field of such slab. Additionally, the minimal use of the concrete is opposed to 
limiting plate deflection. Therefore, the typical approach for computations must be ex-
tended in order to meet the requirements of the SLS and limit the use of material. 

In this paper, the numerical homogenization technique was used to determine the 
effective bending stiffness for computing the plate displacement via the analytical for-
mula. The homogenization technique used here was that presented by Garbowski and 
Gajewski [22]. The bending stiffnesses of 𝐷 , 𝐷 , 𝐷 , and 𝐷  were determined by the 
homogenization technique in [22], which was used in multiple papers [34,45–48]. 

The square and symmetric bubble deck concrete slab was considered here, and the 
structure was reinforced with upper and lower steel mesh with 𝜙10 steel bars. The cross-
section design of the concrete bubble deck was described by a parametric RVE model with 
the design parameters gathered in �̅� (see Section 2.2). The span dimensions of the slab 
were assumed to be 12 × 12 m  , with evenly distributed load 𝑞  . See Section 2.1.2 for 
more details of the assumed load. 

The governing equation for the Kirchhoff–Love plate takes the following form 
[49,50]: 𝐷 𝜕 𝑤𝜕𝑥 + 2(𝐷 + 2𝐷 ) 𝜕 𝑤𝜕𝑥 𝜕𝑦 + 𝐷 𝜕 𝑤𝜕𝑦 = 𝑞. (9)

in which 𝑤  is the transverse deflection, 𝑥  and 𝑦  are the in-plane coordinates of the 
plate, and 𝑞 is the transverse load. 

The assumed plate was simply supported for all edges; therefore: 𝑎: 𝑥 = 0, 𝑤 = 0, 𝑀 = 0. 𝑏: 𝑥 = 0, 𝑤 = 0, 𝑀 = 0. (10)

in which 𝑎, 𝑏 are the dimensions of the floor slab (here, 𝑎 = 12 m and 𝑏 = 12 m were 
assumed), and 𝑥 , 𝑥  are the orthogonal coordinates along the perpendicular edges, re-
spectively. 
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It was assumed that the orthotropic plate was subjected to a transverse, uniformly 
distributed load, labeled as 𝑞 : 𝑞(𝑥 , 𝑥 ) = 𝑞 = 𝑞 (�̅�). (11)

For more details regarding the determination of the uniformly distributed load, 𝑞 , please 
refer to Section 2.1.2. 

The final form of the plate deflection read: 

𝑤(�̅�) = 16𝑞𝜋   sin 𝑚𝜋𝑥𝑎 sin 𝑛𝜋𝑥𝑏𝑚𝑛 𝐷 (�̅�) 𝑚𝑎 + 2 𝐷 (�̅�) + 2𝐷 (�̅�) 𝑚𝑛𝑎𝑏 + 𝐷 (�̅�) 𝑛𝑏 . (12)

in which 𝑚, 𝑛 are the odd numbers. 
The total cost function, 𝐹, in the optimization problem to be solved takes the two 

following components: 𝐹(�̅�) = 𝜔𝐹 (�̅�) + 𝐹 (�̅�). (13)

in which 𝐹  is responsible for decreasing the concrete use and 𝐹  regards not exceed-
ing the serviceability limit state due to the Eurocode standard [43]. The dimensionless 
factor 𝜔 is the scaling factor of the previous two and was selected by trial and error, with 
the aim of balancing the influence of both components on the objective function. There-
fore, in this study, 𝜔 was set to 0.2 × 10 . The mathematical details of the optimization 
algorithm used for minimizing the cost function, 𝐹(�̅�), were included in Section 2.4. 

The total volume of the bubble deck floor slabs, 𝐹 , was calculated by using a single 
representative volume element of the bubble deck unit: 𝑉 (�̅�) = 𝐵 ∙ 𝐿 ∙ 𝐻 − 43 𝜋 𝑑2 𝑑2 . (14)

Therefore, the first component of the cost function, 𝐹 , read: 𝐹 (�̅�) = 𝑎𝑏𝐵𝐿 𝑉 (�̅�). (15)

The second component of the cost function, 𝐹 , was computed based on the max-
imum slab deflection (computed by Equation (12)), combined with the serviceability limit 
state: 𝐹 (�̅�) = 𝑤(�̅�) − min(𝑎, 𝑏)250 . (16)

In the optimization problem, the boundary limits of each design parameter of the 
concrete bubble deck were assumed and are presented in Table 1, where 𝑏  is the lower, 
while 𝑏  is the upper boundary of the physical dimensions. In Section 2.2, full details 
regarding the meaning of the symbols are presented, including exemplary graphics. 

Since the dimensions of the bubble changed in the optimization process and the bub-
ble was immersed in concrete with a variable height and width of the RVE module, phys-
ical inequality restrictions should be introduced. Therefore, the following inequality con-
straints were adopted: 𝑑 − 𝐻 + 40 ≤ 0𝑑 − 𝐵 + 40 ≤ 0 (17)

In Equation (17), 40 represents the concrete bubble cover in mm that is, the distance be-
tween the surface of the bubble void and the outer surface of the concrete at cardinal 
points. The assumed nominal value of the concrete cover regarding the steel mesh was 35 𝑚𝑚. 
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Table 1. The lower and upper boundary values of the parameters selected for optimization of the 
concrete part of the bubble deck slab. 

Boundary 
𝑩 

(mm) 
𝑯 

(mm) 
𝒅𝟏 

(mm) 
𝒅𝟐 

(mm) 𝑏  100 100 50 50 𝑏  500 500 500 500 

Local search algorithms, such as the one used in this paper, are vulnerable to find the 
locally optimal solutions. Therefore, in order to minimize the probability that a globally 
and not locally optimal solution will be found, the optimization algorithm was run many 
times from different starting points (initial guesses) (see Table 2). This is a typical approach 
for better exploration of the multi-dimensional space of the design parameters. 

All computations in the research, apart from computing the stiffness matrices of 
RVEs (see Section 2.2), were performed using MATLAB software (ver. 2023a) [51]. 

Table 2. The initial guesses of the design parameters selected for optimization of the concrete part 
of the bubble deck slab. 

No. 
𝑩 

(mm) 
𝑯 

(mm) 
𝒅𝟏 

(mm) 
𝒅𝟐 

(mm) �̅�  150 300 100 70 �̅�  250 200 150 80 �̅�  220 200 160 100 �̅�  200 250 110 180 �̅�  170 150 90 90 

2.4. Mathematical Optimization Procedure 
Among the many available methods of optimization, the sequential quadratic pro-

gramming (SQP) method is one of the most reliable and trustworthy. This mainly regards 
its efficiency, namely, the smallest number of cost function evaluations is obtained in the 
benchmark examples and sufficient accuracy is maintained [52–56]. Therefore, in this 
study, the SQP method was used, as in [57]. 

The classical optimization problem read [56]: min 𝐹(�̅�), (18)

in which 𝐹(�̅�) is the cost function of the sought parameters, �̅�. The sough parameters 
may be constrained with equalities: 𝐶 (�̅�) = 0,𝐴 ∙ �̅� = 𝑏 , (19)

and/or more complex constraints may be more adequate. For instance, the nonequality 
constraints: 𝐶(�̅�) ≤ 0,𝐴 ∙ �̅� ≤ 𝑏,𝑏 ≤ �̅� ≤ 𝑏 , (20)

in which 𝑏, 𝑏  are one-column matrices, 𝐴, 𝐴  are matrices, 𝐶, 𝐶  are functions, and 𝑏  and 𝑏  represent the lower and upper boundaries of the sought parameters, �̅�. 
Constraints in the function 𝐹(�̅�) were computed by utilizing the Lagrange’s func-

tion approach, 𝐿. Thus, the mathematically equivalent subproblem is defined by the fol-
lowing: 
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𝐿(�̅�, 𝜆) = 𝐹(�̅�) + 𝜆 ∙ 𝑔(�̅�), (21)

in which 𝜆  are the so-called Lagrange multipliers, while 𝑔 (�̅�) are the constraints of non-
equality. 

In the SQP method, the following form of quadratic programming was solved: min∈ 12 𝑑 𝐻 + ∇𝐹(�̅� ) 𝑑, (22)

in which 𝐻  is the positive definite approximation of the Hessian matrix, which approx-
imates Equation (21). The approximation of the Hessian matrix was modified at each pri-
mary iteration by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method: 𝐻 = 𝐻 + 𝑞 𝑞𝑞 𝑠 − 𝐻 𝑠 𝑠 𝐻𝑠 𝐻 𝑠 , (23)

in which: 𝑠 = �̅� − �̅� , (24)

𝑞 = ∇𝐹(�̅� ) + 𝜆 ∇𝑔 (�̅� ) − ∇𝐹(�̅� ) + 𝜆 ∇𝑔 (�̅� ) . (25)

A new step was computed based on the solution of the quadratic programming prob-
lem: �̅� = �̅� + 𝛼 𝑑 , (26)

in which 𝛼  is the step length obtained by minimization of the objective function [52–56]. 

3. Results 
In local search optimization algorithms, it is recommended to solve multiple optimi-

zation problems to determine the solution, which is not locally but globally optimal. 
Therefore, the optimization procedure was conducted for several initial guesses of the de-
sign parameters to find the best solution, and the solutions of the initial assumed guesses 
were presented in Section 2.3. The results obtained from solving the optimization problem 
stated in Section 2.3 by the optimization method shown in Section 2.4 are summarized in 
Table 3. The second to fifth columns present the optimal parameters of the concrete bubble 
deck designs. In column six, the slab deflection obtained for the optimal designs due to 
the uniformly distributed load can be found. Moreover, the seventh to ninth columns 
show the components of the cost function and the total value of the cost function. 

Table 3. Optimal designs of the concrete bubble deck slab with corresponding cost function values 
obtained by the optimization algorithm. 

No. 
𝑩 

(mm) 
𝑯 

(mm) 
𝒅𝟏 

(mm) 
𝒅𝟐 

(mm) 
𝒘 

(mm) 
𝝎𝑭𝒗𝒐𝒍 

(–) 
𝑭𝒅𝒆𝒇𝒍 

(–) 
𝑭 
(–) �̅�  100.0 158.6 115.8 50.0 47.94 4.1314 0.0616 4.1930 �̅�  122.1 158.5 109.1 55.9 48.02 4.2193 0.0164 4.2357 �̅�  158.2 157.5 99.7 89.1 48.01 4.0593 0.0121 4.0714 �̅�  110.7 156.0 52.8 70.5 48.12 4.2505 0.1165 4.3669 �̅�  144.8 155.6 53.8 104.4 48.04 4.0600 0.0390 4.0990 

More details of the convergence of the solutions are presented for selected examples 
from Table 3 in Figures 3–5. In each figure, the minimization of the cost function, 𝐹, is 
demonstrated with its components for iterations of the optimization algorithm, i.e., 𝜔𝐹 —component of minimizing the volume of the concrete, and 𝐹 —component of 
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minimizing the maximum plate deflection (see Figures 3a, 4a and5a). Additionally, in Fig-
ures 3b, 4b, and5b, the maximum plate deflection was confronted with the SLS condition 
from the Eurocode standard [43]. For the analyzed case of the slab, namely, 12 × 12 m , 
the limit computed from the 1/250 condition was equal to 48 mm. In Figures 3b, 4b and 
5b, the limit is marked with a dashed line. In addition, in Figures 3c, 4c and 5c, the changes 
of the sought parameters of 𝐵, 𝐻, 𝑑 , and 𝑑  within the optimization are shown, show-
ing the convergence to the final sought parameters of the bubble deck slab. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. The convergence of the optimal selection of geometrical parameters of the bubble deck 
slab for initial guess �̅� : (a) cost function, (b) verification of the serviceability limit state, and (c) 
derived bubble deck parameters. 

 
(a) 
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(b) 

 
(c) 

Figure 4. The convergence of the optimal selection of geometrical parameters of the bubble deck 
slab for initial guess �̅� : (a) cost function, (b) verification of the serviceability limit state, and (c) 
derived bubble deck parameters. 

 
(a) 

 
(b) 
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(c) 

Figure 5. The convergence of the optimal selection of geometrical parameters of the bubble deck 
slab for initial guess �̅� : (a) cost function, (b) verification of the serviceability limit state, and (c) 
derived bubble deck parameters. 

4. Discussion 
The optimal design of the bubble deck slab floor regarding concrete use and the SLS 

is not a trivial task. The main difficulty is determining the mechanical properties of the 
periodically changing cross-section of the plate. Fully detailed finite element modeling of 
such structures is time-consuming in modeling and computations. Therefore, for this rea-
son, for engineering purposes, the method presented in the paper is highly attractive. It 
does not require full formal finite element analysis of the floor slab, but only building the 
global stiffness matrix of the single periodic RVE unit and straightforward post-computa-
tions to obtain effective stiffnesses. 

Therefore, in this paper, the complex structure of the bubble deck slab was consid-
ered to determine the optimal solution without using a typical, less accurate method. In 
this paper, the minimization of 𝐹  and 𝐹  components was in contrast; therefore, it 
was typical that the 𝐹  component decreased, while the 𝐹  component increased (for 
instance, see iterations 2 and 9 in Figure 4a). The rapid increase of the deflection plots was 
related to the principle of operation of the optimization algorithm, which changed the slab 
parameters so that the concrete volume was reduced. This increased the deflection, which, 
when L/250 was exceeded, activated a kind of penalty function (𝐹 ) that increased the 
total value of the objective function. 

However, as presented in the optimization summary in Section 3, it was possible to 
obtain the deflection very close to the design standard limit, i.e., 48 mm. As shown in Ta-
ble 3, all differences in the deflections achieved in relation to the design standard limit 
were approximately not bigger than 0.15 mm. Therefore, those components in the cost 
function outcomes were relatively small, not bigger than 0.12; however, the smallest was 
computed for the initial guess of �̅� , i.e., 0.0121. In Figures 3b, 4b and 5b, it can be ob-
served that occasionally, the optimization algorithm broke the deflection limitation (for 
instance, see iterations 2 and 4 in Figure 3b), but it returned to respecting the limit after 
one or a few iterations. Similar features are visible in Figure 4b, iterations 2 and 9, and in 
Figure 5b, iterations 2, 12, and 15. 

On the other hand, it was observed that the component related to the minimization 
of the concrete use yielded much greater values, that is, between 4.06 and 4.25. Since this 
component is the scaled volume of the concrete of the slab, it cannot be minimized to 0. 
Still, significant decreases of this component were observed compared to the initial guess 
values (see red plots in Figures 3a, 4a and 5a). Here, the lowest value was obtained for the 
initial guess of �̅� , i.e., 4.0593. 

The best solution, that is, the globally optimal solution, was obtained for the initial 
guess of �̅� . Compared to the initial design of the bubble deck, the weight loss of the 
concrete was 23% (4.06, compared to 5.26 of 𝐹 ). Therefore, the optimal parameters of 
the simply supported bubble deck slab of 12 × 12 m  for the uniformly distributed load 
were: 𝐵 = 158.2 mm , 𝐻 = 157.5 mm , 𝑑 = 99.7 mm, and 𝑑 = 89.1 mm . Optimal 
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parameter 𝐻 was similar for all locally optimal solutions, as can be observed in Table 3, 
where it changed from 155.6 mm to 158.6 mm. 

The main advantage of the methodology shown in the paper is the computational 
time of the analysis. The single evaluation of the cost function lasted less than 15 s. There-
fore, in less than approximately 20 min, the single optimization procedure was finished. 
Going further, after about 2 h, the reasonable exploration of the design space can be 
achieved, and finally, the globally optimal solution can be expected. 

5. Conclusions 
The main aim of this paper was to find the optimal designs of the bubble deck slab 

subjected to a uniformly distributed load with regard to minimal concrete use and not 
exceeding the serviceability limit state of the Eurocode standard. In the research study, 
the numerical homogenization technique was used to determine the effective properties 
of the bubble deck slab within the cost function. Moreover, the local search algorithm of 
sequential quadratic programming was used in the minimization problem with linear 
constraints to derive the bubble deck slab module; that is, its length/width and height, but 
also the geometry of the ellipsoidal bubble void, i.e., its height and horizontal diameter. 

As confirmed in the research, the optimization allowed to determine designs of the 
bubble deck slabs that ensured the minimum mass of concrete and met the serviceability 
limit state. Compared to the initial design of the bubble deck, the weight loss of the con-
crete was 23%. It was shown that the homogenization method used in this paper is highly 
attractive because it does not require solving complex structural problems through the 
computationally expensive finite element method. Achieving an optimal bubble deck de-
sign from a computational point of view would be carried out in just a few hours, instead 
of the heavy calculations of a single design case that would take the same amount of time. 
Due to the method used, the complex structure of the bubble deck slab was considered 
without using the typical method of substituting the cross-section of the concrete, which 
is less accurate due to shape simplification. 
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