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Abstract. The paper demonstrates the potential of combination of inverse analysis and wavelet
transform in a discrete form for structural damage identification. The efficiency of the method
is tested through series of numerical examples, where the real structure is simulated by a
parametrized finite element model. The eigenvibrations of cantilever steel beam are taken into
consideration, structural response signal is computed in discrete points uniformly distributed
along the beam span. Analyzes are performed for eigenmodes expressed in amplitudes of ver-
tical displacements. By changing control parameters embedded in numerical model the mini-
mization of the discrepancy between the wavelet representation of both ’real’ and numerically
computed data is presented. To minimize the objective function a global minimization technique,
namely genetic algorithm, is employed in the study. Computer tests proved that the identifica-
tion of more than one defect in the structure with the unequal number of measurement points in
both ’real’ and numerical experiments is possible.
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1 INTRODUCTION

The damage generally can be defined as a change in the material (e.g. crack, void, inclusion
or delamination), which impairs the functioning of the structural element currently or in the
future and may lead to destruction of this element or, in the worst case, it can initiate progressive
failure of a whole structure. Early detection, localization and estimation of structural damage
is one of the most important engineering issues and belongs to a wide class of identification
problems, where unknown parameters of a structure are determined from experimental tests.

Non-destructive testing is relatively young and still developing field of science. There are
different approaches and many advanced methods, most of them based on the analysis of the
structural response signals. Radiography [1], used in almost all manufacturing processes of in-
dustrial equipment, is considered as a very reliable method of non-destructive damage detection
method. Ultrasonic methods (see e.g. [2]) use transmission of high-frequency sound waves in
a material and make possible to detect cracks, delamination, porosity and other discontinuities
within the elements. Acoustic emission method [3] has the capability of detection of the elastic
waves generated by crack initiation or growth and generally allows continuous monitoring of
damage progress. Another method of non-destructive testing uses a magnetic field effect. This
technique was applied for damage detection in e.g. [4]. Eddy current method is based on induc-
tive properties of alternating current and is suitable for inspection of the surface and just beneath
the surface of conductive materials e.g. for crack detection or defect classification [5]. Infrared
and thermal testing have proved to be an effective, convenient, and economical method. Involv-
ing the measurement of surface temperatures as heat flows to, from and/or through an object
makes possible to detect and characterize the damage in homogenous [6] or heterogenous ma-
terial [7]. A great potential is assigned to soft methods, mainly evolutionary algorithms [8] and
artificial neural networks [9] which give an extensive possibilities of applications for structural
health monitoring.

An important role in the damage detection play methods based on modal analysis and the use
of dynamic characteristics of the structure. It was observed that even small and local damage
leads to stiffness reduction, decrease of natural frequency and increase of damping of examined
structure. Already about 70 years ago the relationship between the eigenfrequency and the
introduction of crack in the steel beam was described in [10]. This approach, based on analysis
of structural dynamic response, is further developed through the years and can be easily applied
to identify the presence of damage (see e.g. [11]).

Different types of response, namely eigenfrequencies/eigenmodes, displacements, velocities
and accelerations can be usefull for structural health monitoring. Nevertheless, it happens that
the experiments limited to measurement of eigenfrequences are insufficient, since the global
dynamic response is rather insensitive to damage localized on a small area, so the localization
and severity of defect is not easy to identify. Therefore, attempts have been taken to increase the
sensitivity of vibration methods. In [12] an additional parameter as an elastic or rigid support
and a mass was introduced into the structure. The change in a natural frequencies for vary-
ing parameter values with respect to damage location is analyzed. To assess the location and
severity of defect the damage indices were applied and the identification problem was solved by
the minimization of the parameter dependent distance functional. Optimization of unspecified
distribution and orientation of loading in order to minimize the distance norm between model
prediction and experimental data was discussed in [13]. The sensitivity derivatives with respect
to load parameters and respective optimality conditions were derived using the adjoint vari-
able approach. The closed form solutions for optimal load in structural problems were derived
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for statically determinate beam-column structures. Structural identification using a min-max
approach applying FEM solutions was discussed for a propped cantilever beam.

The method which enables to extract the desired detailed information from a numerous data
representing the global response of a defective structure called Wavelet Transformation (WT)
is proposed in the paper. An indicator of the damage presence and location in this type of
analysis are the strong disturbances of the transformed signal. There are many wavelet func-
tions e.g. Haar wavelet, Symlet, Coiflet, Meyer, Gaussian, Mexican hat or Morlet and new
ones are constantly developed. Previous studies of the authors (see [14], [15]) proved that, in
the class of considered problems, the most effective appeared to be Daubechies wavelet of 4th
order [16]. Severity of the damage can be estimated using e.g. Lipschitz exponent [17] but
the structural response signal processing using CWT or DWT has turned out to be ineffective
in identification damage details such as the type or shape. Therefore, some alternative method
which provides a more precise damage identification is needed. In the literature a few attempts
can be found, e.g. a combination of WT and artificial neural networks. In [18] the authors pro-
posed the method which combines the continuous wavelet transform (CWT) and artificial neural
networks (ANNs) with their possibility of learning, remembering or recognition and called it
neuro-wavelet technique. To collect the ANN training data the experiment and numerical sim-
ulation was conduct on CWT moduli of a simple cantilever beam static deflection line. The
method was validated on experimentally determined mode shapes of a beam and more complex
structures, like plate or shell.

For characterization of damage details such as type, intensity and size, in the locally de-
fective elements of the structure, an important tool proved to be inverse analysis. This method,
besides data obtained as a result of the experiment, uses also numerical counterpart of the signal
obtained from the computer simulations. In the current study the structural response signal is
represented by the wavelet coefficients. At the present stage, the experiments are limited only
to computer test simulations in order to check the robustness of the proposed approach. For
the discrepancy minimization a variety of different minimization techniques can be employed
in inverse analysis. The objective function, meaning the discrepancy between experimental and
numerical measurable quantities, is usually minimized in the frame of least square approach
[19]. Inverse problems are often solved by making use of iterative minimization gradient based
algorithms (e.g. [20]), based on soft computing methods (e.g. [21]), etc. Structural or consti-
tutive parameters, which are usually unknown or uncertain, are not easily accessible from the
experiment. Indirect measurements, used in inverse analysis with any minimization algorithm,
makes determination of them possible. Many researchers have found this approach useful and
successfully applied it in various fields e.g. [22, 23], [24], [25], [26]. The contribution of this
work is the application of WT in its discrete form together with inverse analysis for structural
diagnosis, which is a novel approach to Structural Health Monitoring. However, it is still an
open and unsolved problem.

2 GENERAL INFORMATION ON WAVELET TRANSFORMATION

Any signal can be portrayed as a sum of sinusoidal signals. It becomes a basis for widely
used Fourier analysis, which is a perfect tool for analyzing the stationary signals representing
them in frequency domain. In wavelet transform (WT) for the representation of the signal f(t) a
linear combination of wavelet functions is used. Wavelets are localized in time and frequency
domain and have advantages over Fourier transform in situations when the signal contains dis-
continuities, spikes or sharp edges. The data are cut into different frequency components and
then each component is analyzed with resolution matched to its scale reducing the effects of
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the Heisenberg uncertainty principle [27]. In this case it means the inability of precise signal
analysis in time domain and frequency domain at the same time.

It is considered that ψ (t) ∈ L2(R) is a wavelet (mother) function if it satisfies admissibility
condition: ∫ ∞

0

|Ψ(ω)|2

ω
dω <∞, (1)

where Ψ(ω) is Fourier transform of function ψ(t). Average value of wavelet function is equal
to zero, it means that the wavelet integral over real axis disappears:∫ ∞

−∞
ψ(t) dt = 0. (2)

In wavelet transform there is only one wavelet (mother) function. For signal decomposition
copies of wavelet, which are called wavelet family, are used. They are obtained by scaling and
translating ψ according to formula:

ψa,b =
1√
|a|
ψ

(
t− b

a

)
, (3)

where the variable t denotes time or space coordinate, a is the scale parameter and b indicates
the wavelet translation in time/space domain; a, b ∈ (R); a ̸= 0. The scale factor |a|−1/2 is a
normalization coefficient which ensures constant wavelet energy regardless of the scale. This
means that ∥ψa,b∥ = ∥ψ∥ = 1 [28].

Continuous wavelet transform of given function f(t) is obtained by integrating the product
of the signal function and the wavelet functions [29]:

W f (a, b) =
1√
|a|

∫ ∞

−∞
f (t) · ψ̄

(
t− b

a

)
dt = ⟨ f (t), ψa,b⟩ , f ∈ L2(R). (4)

An important role in applications, due to numerical efficiency, plays wavelet transformation
in its discrete form . Substituting a = 1/2j and b = k/2j , k, j ∈ C in the (3) a wavelet family
is obtained:

ψj,k(t) = 2j/2ψ
(
2jt− k

)
, (5)

where j = 0, ..., J − 1 is scale parameter, k = 0, ..., 2j − 1 translation parameter and J is the
maximum level of transformation. Meaning of these parameters for the simplest Haar wavelet
is shown in Fig.1.
Discrete wavelet transform is defined as:

W ψj,k = 2j/2
∫ ∞

−∞
f (t) · ψ̄

(
2jt− k

)
dt = ⟨ f (t), ψj,k⟩ (6)

and wavelet coefficients are given by:

dj,k = ⟨ f (t), ψj,k⟩ . (7)

A linear combination of wavelet functions ψj,k and wavelet coefficients dj,k allows to represent
a discrete signal (the number of data is equal to 2J ) in the form:

f(t) =
J−1∑
j=0

dj,k ψj,k(t) (8)
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Figure 1: Haar wavelet with different j and k parameters.

Multi-level signal representation is possible thanks to multi-resolution analysis (MRA) (see
[30]), closely connected with wavelet transform. For multi-resolution signal analysis a scaling
wavelet φ(t) (father) is required:

φj,k(t) = 2j/2φ
(
2jt− k

)
. (9)

Discrete signal f(t) can be approximate using wavelet ψ(t) and scaling φ(t) functions accord-
ing to:

f(t) =
∞∑

k=−∞

aj,k · φj,k(t) +
∞∑

k=−∞

∞∑
j=0

dj,k · ψj,k(t), (10)

where aj,k are scaling function coefficients derived from the formula:

aj,k = ⟨ f (t), φj,k⟩ . (11)

A wavelet function has a band-like spectrum, so the coefficients dj,k have high frequencies
information (details). Coefficients aj,k have low-pass information with a constant component
which is called signal approximation.

Multi-resolution analysis of discrete signal can be expressed in Mallat’s algorithm:

fJ = SJ +DJ + ...+Dn + ...+D1, n = J − j (12)

where SJ is a smooth signal representation, Dn and are Sn are details and rough parts of a
signal, j is the level of decomposition and J level of MRA.

In this work Daubechies wavelet of fourth order was implemented. Daubechies 4 wavelet
(mother) function and scaling (father) function are shown in Fig.2. Daubechies wavelet was
invented by Belgian mathematician Ingrid Daubechies (see [16]). This is the first discovered
family of orthogonal continuous wavelets with compact support. These wavelets are asym-
metrical, compactly supported, with sharp edges. They require a small number of coefficients
therefore are widely used in solving a broad range of problems, e.g. image analysis. Their order
is between 2 and 20 (always even numbers). Each wavelet has a number of zero moments or
vanishing moments equal to half of the order. Second order Daubechies wavelet corresponds to
the simplest Haar wavelet.
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Figure 2: Daubechies 4: a) mother wavelet, b) father wavelet

3 GENETIC ALGORITHMS IN INVERSE PROCEDURE

Search for the solution in inverse problems usually consists of two parts, i.e. the numerical
discretization methods for direct computations of assumed structure and the iterative procedures
that are used to seek for the actual structural and geometrical configuration. The discretization
schemes for the structure in the literature include e.g. finite difference methods, the finite ele-
ment (FE) method or the boundary integral equation (BIE) technique, to list just a few. The most
crucial part in the formulation and numerical solution methods for realistic inverse problems,
however, lies in finding a robust iterative procedures for a large variety of complex problems that
will proceed towards the final configuration. Numerous of the iterative procedures in the litera-
ture are based upon various gradient-based optimization and/or sensitivity analytical schemes in
which the Jacobian and/or the Hessian matrices (or their approximations) of the system must be
calculated in the iterative procedures. One of the advantages of gradient-based solution schemes
is that good starting points usually lead to fast convergence for structures with relatively simple
configurations. On the other hand gradient methods may not produce a good solution if local
optima exists, they may then oscillate between several local minima, need cumbersome reg-
ularization procedures, need penalty constraint formulations, or other augmentation schemes
when a reasonable starting point is difficult to find. These techniques may also destabilize as
the number of parameters increases.

Here, a methodology based on Genetic Algorithms (GA) for the solution of inverse problems
pertaining to the identification of the damage severity and localization in simple structural ele-
ments is selected and described. Genetic algorithms are probabilistic parallel search algorithms
based on natural selection. GAs were designed to efficiently search large, non-linear, poorly
understood search spaces where expert knowledge is scarce or difficult to encode and where
traditional optimization techniques fail. They work with a population of individuals (usually
encoded as bit strings) that represent candidate solutions to a problem. The population is mod-
ified by the application of genetic operator from one iteration (generation) to the next until a
stopping criterion is met. The algorithm evaluates, selects, and recombines members of the
population to form succeeding populations. Evaluation of each string which encodes a candi-
date solution is based on a fitness function that is problem dependent. For our problem, the
mean square root of the differences between the measured quantities at each sensor location
and the corresponding computed quantities from the assumed structural configuration provides
a measure of ‘fitness’. This fitness measure is used by the selection operator to select relatively
fitter individuals in the population for recombination, crossover and mutation. Mutation insures
against the permanent loss of genetic material. Crossover is the main recombination operator.
It is a structured yet stochastic operator that allows information exchange between candidate
solutions. Two point crossover is implemented by choosing two random points in the selected
pair of strings and exchanging the substrings defined by the chosen points.
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The GA offers several advantages over the traditional methods. First, unlike various tradi-
tional gradient based formulations, the present method does not require the calculation of the
Jacobian and/or the Hessian matrices or the various sensitivity parameters of the system. The
corresponding numerical procedures are therefore much simpler and more stable than traditional
methods. This is important because the Jacobian, Hessian matrices, and the various sensitivity
parameters are usually sensitive to the ill-posed nature of the structure system. Second, unlike
the traditional methods in which various penalty functions or Lagrangian multiplier procedures
are used to impose the required constraints such as the internal structure sizes, location ranges
etc., treatments for these constraints are much simpler in the GA. Finally, because the GA per-
forms the solution search globally, the problem of local minima in traditional gradient based
analytical search methods is mitigated.

4 FORMULATION OF THE PROBLEM

Using this approach, the inverse problem is expressed as a minimization problem with the
objective function being the mean square root of the differences between the wavelet represen-
tation of the vertical displacement measurements at each sensor location and the corresponding
computed quantities from the assumed structural configuration, i.e.

ω =

√√√√ 1

N

N∑
i=1

[UEXP
i − UNUM

i ]
2 (13)

where N is the number of DWT coefficients, UEXP and UNUM are, respectively, the wavelet
representations of measured and calculated values of the signal composed of vertical displace-
ments amplitudes at the j-th sample point. This objective function is used by the GA to measure
the fitness of individuals in a population of candidate solutions. Possible approximate solutions
are found by the GA gradually leading to an increase in the average fitness of the population.

For a given structure and boundary conditions, the values of the variables describing the
damage locations and dimensions are obtained from a FE method. The outline of an algorithm
is presented below:

1. randomly generate an initial population of solutions, each of which is an assumed damage
configuration;

2. use the FE method to compute the eigenvalues and corresponding eigenvectors of the
structure;

3. compute the wavelet coefficients of the deformation modes of structure;

4. compare the values of wavelet representation of deformation mode computed from the FE
with measured values and compute the mean square root error using the error expression
defined in 13;

5. if the mean square root error is smaller than a predetermined value, stop;

6. produce a new generation using cross-over and mutation, and go to the second step.
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5 EXAMPLES AND RESULTS

The efficiency of damage detection and identification using a combination of DWT and in-
verse analysis is studied here. It is assumed that the information specifying the response of
the undamaged structure are unknown. Hence, the wavelet transformation is applied only to
response signals of defective structures. The authors analyze a cantilever beam made of steel,
with a span l = 1.0 m and a rectangular cross section with dimensions of 4 × 8 cm. Young’s
modulus E is equal to 200 GPa, mass density ρ = 7850kg/m3. In the study the Euler-Bernoulli
beam theory is applied, which means that any transverse shear deformation is ignored. Ten
percent severe failure in one beam element is introduced into the structure as a hight reduction
of cross section from h = 8 cm to h1 = 7.2 cm (see Fig.3a) or as a change of Young’s mod-
ulus value from E = 200 GPa to E1 = 180 GPa (Fig.3b), d denotes the length of defective
part of the structure and corresponds to the dimension of one finite beam element. The num-

l = 100cm

8
cm

4

x

d

8
cm
4

l = 100cm

d

x

a)

b)

h1

E1

Figure 3: Steel cantilever beam: a) damage modeled as hight of cross section reduction, b) damage modeled as
Young’s modulus reduction.

ber of damaged elements may vary from one to several at various locations along the beam
span. The real structure, subjected to a dynamic excitation, is simulated by parameterized Fi-
nite Element (FE) model. At the present stage of the study the real experiment is mimic by its
numerical simulation, called pseudo-experiment, in which all parameters xref are known. All
control parameters gathered in the vector x are embedded in the numerical model (different
then pseudo-experimental one). For initial guess of sought parameters i.e. damage position
(x1), number of defective elements (x2) and amount of damage (x3) numerical experiment is
performed. For minimization of the discrepancy between the results obtained from numerical
model and pseudo-experiment model the genetic algorithm is employed.

Here the population in GA is chosen to consist of 20 individuals randomly initialized, from
which 2 best fitted are selected as elite at each iteration, remaining members are subjected to
crossover (80%) and mutation (20%). Both operations create new individuals within feasible
domain through subjected constrains, here location of damage is bounded within [0, L] and
amount of damage is limited to [0, 50%]. Since crossover combines two individuals to form a
new child for a next generation, an important issue is to properly mix genes of both parents.
Here a scatter algorithm is implemented, which uses random selection of genes to be used from
first and second parent to form a child’s gene. Mutation is realize in a very similar way, first,
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the algorithm select a fraction of a vector entries of an individual for mutation and later each
selected entry which chosen probability is replaced by a random number from a range for that
entry.

The response signal is computed in discrete points uniformly distributed at the longitudinal
axis of the beam, which however are not at the same position as nodal coordinates in FE model.
This is due to fact that both numerical model and psudo-experimantal one use different meshes
in order to not bias the results. As an input signal to wavelet decomposition a first eigenmode
expressed in amplitudes of displacements is taken into consideration. Inverse analyzes are per-
formed on DWT represented by the wavelet coefficients of original signal. By different initial-
ization of the vector x in the numerical model (which is different from the pseudo-experimental
one xref), and by comparing the converged values of the sought parameters to those parameters
used for pseudo-experimental data generation, one can check the robustness of the proposed
method. The novelty, compared to earlier studies of the authors (see [31]), is the identification
of more than one defect in the structure with the unequal number of measurement points in both
pseudo-experimental and numerical experiments.

Here below, some selected examples of damage identification in deteriorated cantilever beam
are presented. First example concerns a beam with a stiffness reduction of 10% in two locations:
0.33 m and 0.66 m. Both damaged zones have width of 0.01 m. In second example two variants
are considered: in both a beam has one damaged section located in 0.33 m. In the first one the
stiffness is reduced by 10 % on the length of approximately 0.01 m, in the other the beam hight
is reduced by 10 % on the length of approximately 0.02 m.
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Figure 4: 1-st eigenmode and its wavelet representation (left); convergence of the four parameters, x1 - damage
location ‘a’, x2 - damage location ‘b’, x3 - deterioration ‘a’, x4 - deterioration ‘b’ (right)

Figure 4 shows the result of first example. A beam has two damaged zones located in 0.33 m
and 0.66 m what is evidenced in the Fig.4 by the wavelet decomposition of an eigenvector. Here,
four parameters are unknown, namely: (x1) 1-st damaged zone location, (x2) 2-nd damaged
zone location, (x3) an amount of 1-st damage and (x4) and amount of 2-nd damage. All four
parameters converged to their reference values within approximately 10-12 iterations (Fig.4).

Figure 5 shows the histogram of each sought parameter within population in each iteration. It
is evidenced in the Fig.5 that mean values of each parameter converge to their reference values.

Figure 6 shows the result of second example - variant (1). A beam has one damaged zones lo-
cated in 0.33 m what is evidenced in the Fig.6 by the wavelet decomposition of first eigenvector.
Here again four parameters are unknown, namely: (x1) 1-st damaged zone location, (x2) 2-nd
damaged zone location, (x3) an amount of 1-st damage and (x4) and amount of 2-nd damage.
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Figure 5: Histogram of population’s components: x1 - damage location ‘a’ (left-up); x2 - damage location ‘b’
(left-down); x3 - deterioration ‘a’ (right-up); x4 - deterioration ‘b’ (right-down): black line points out the reference
value
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Figure 6: 1-st eigenmode and its wavelet representation (left); convergence of the four parameters, x1 - damage
location ‘a’, x2 - damage location ‘b’, x3 - deterioration ‘a’, x4 - deterioration ‘b’ (right)

Only two parameters (x1 and x3) converged to their reference values within approximately 8-10
iterations (Fig. 6). The remaining two parameters (x2 and x4) have oscillated during analysis
and finally start to diverge once the damage was located by a first pair of parameters (x1 and x3).
This phenomenon is due to a very narrow width (0.01 mm) of the zone where the stiffness was
reduced in the model. Therefore only one searching pair was sufficient to localize and estimate
a damage zone.

Figure 7 shows the histogram of each sought parameter within population in each iteration of
the second example. It can be observed in the Fig.7 that mean values of two parameter x1 and
x3 converge to their reference values but mean values of x2 and x4 oscillate during the inverse
analysis and finally deviate from their reference values.

Figure 8 shows the result of second example - variant (2). A beam has one damaged zones
located in 0.33 m what is evidenced in the Fig.8 by the wavelet decomposition of first eigenvec-
tor. Same parameter as in previous analyses are unknown here, namely, x1, x2, x3 and x4. This
time all four parameters converged to their reference values (Fig.8) though the convergence was
observed only in the last iteration. Successful identification in this example can be explained by
the fact of relatively wide zone when the hight of the beam was reduced. Therefore two small
virtual damaged zones concentrate around its real location.
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Figure 7: Histogram of population’s components: x1 - damage location ‘a’ (left-up); x2 - damage location ‘b’
(left-down); x3 - deterioration ‘a’ (right-up); x4 - deterioration ‘b’ (right-down); black line points out the reference
value
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Figure 8: 1-st eigenmode and its wavelet representation (left); convergence of the four parameters, x1 - damage
location ‘a’, x2 - damage location ‘b’, x3 - deterioration ‘a’, x4 - deterioration ‘b’ (right)
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Figure 9: Histogram of population’s components: x1 - damage location ‘a’ (left-up); x2 - damage location ‘b’
(left-down); x3 - deterioration ‘a’ (right-up); x4 - deterioration ‘b’ (right-down); black line points out the reference
value

Figure 9 shows the the histograms of the last example. It is visible that mean values of
each parameter converged to their reference values, though the convergence of second pair
(parameters x2 and x4) was much slower the the convergence of first pair of parameters, namely
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x2 and x4.

6 CONCLUSIONS

In this communication authors present an approach to damage detection in structural model
through wavelet transformation of a discrete signal measured on a structure and the inverse
analysis based on soft computing. Here, as a signal the eigenmodes expressed in amplitudes of
displacements computed in discrete measurement points are taken into consideration. The effi-
ciency of the method is studied through series of numerical examples, where the real structure is
simulated by a parametrized finite element model. By changing control parameters embedded
in a numerical model the minimization of the discrepancy between the wavelet representation of
both pseudo-experimental and numerically computed data was presented. The analyzes proved
that application of genetic algorithms is very effective in determining the details of damage
such as location, severity, its shape or the number of defective zones. It is possible to obtain
the desired information regardless of the type of defect or the number of damaged areas. The
novelty of presented approach is the identification of more than just one defect in the structure.
It was evidenced that assumed model with a priori chosen two damaged zones can successfully
identify two or one damage in the real structure. This is an important observation. By extend-
ing the numerical model used to detect defective zones in the structure to have more then one
(possibly three or more) damaged areas it seems to be possible to correctly identify more then
just one or two locations and severity of damage.
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