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Abstract: Corrugated board, widely used in the packing industry, is a recyclable and durable material.
Its strength and cushioning, influenced by geometry, environmental conditions like humidity and
temperature, and paper quality, make it versatile. Double-walled (or five-ply) corrugated board,
comprising two flutes and three liners, enhances these properties. This study introduces a novel
approach to analyze five-layered corrugated board, extending a previously published algorithm for
single-walled boards. Our method focuses on measuring the layer and overall board thickness, flute
height, and center lines of each layer. Through the integration of image processing and genetic algo-
rithms, the research successfully developed an algorithm for precise geometric feature identification
of double-walled boards. Images were recorded using a special device with a sophisticated camera
and image sensor for detailed corrugated board cross-sections. Demonstrating high accuracy, the
method only faced limitations with very deformed or damaged samples. This research contributes
significantly to quality control in the packaging industry and paves the way for further automated
material analysis using advanced machine learning and image sensors. It emphasizes the impor-
tance of sample quality and suggests areas for algorithm refinement in order to enhance robustness
and accuracy.

Keywords: corrugated board; double-walled; flute parameters; cross-section images; genetic algorithm

1. Introduction

Corrugated board, as a material commonly used in the packaging industry [1,2], has
many advantages in comparison to the other packing materials. One can notice its strength,
lightweight, ease of customization, recyclability, and relatively low costs. It can effectively
protect goods during their shipping, storage, and handling.

In single-walled corrugated boards, the structure consists of one flute and two liners.
The latter are often manufactured from kraft paper, a kind of paper that comes from wood
pulp. It is known for its durability, strength, and resistance to puncturing or tearing. These
properties make it an ideal material for packaging applications, in particular for outer
layers like liners. The strength, cushioning, height, or smooth surface of the corrugated
board are related to the geometry of the internal layer, that is the flute. The formation of
the fluted sheet in the corrugated board involves the paper being fed through a sequence
of fluting rollers, resulting in the distinctive ridges and valleys. The higher flutes provide
enhanced strength and cushioning, while the smaller flutes are more suitable for printing
purposes due to the smoother surface of the resulting corrugated board. The most common
flute types are as follows:

• A-flute: its approximate height is 5 mm. The A-flute is commonly used for heavy
goods packaging, i.e., furniture, due to its strength and cushioning properties.

• B-flute: its approximate height is 3 mm. The B-flute has quite universal properties. It
is very often used for retail packing or shipping boxes.
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• C-flute: its approximate height is 4 mm. It is the most commonly used type of flute
and has similar applications to the B-flute.

• E-flute: its approximate height is 1.6 mm. It offers a smooth surface, which is appro-
priate for printing purposes. This type of flute is commonly used for retail packaging
and small boxes.

• F-flute: its approximate height is 0.8 mm. It can be applied, similarly to the E-flute,
for small boxes and retail packing, providing good printing properties due to smooth
surface of the corrugated board.

The choice of flute depends on the final specific application. However, it is possi-
ble to improve the corrugated board properties by applying the double-walled structure,
e.g., to combine cushioning and printing quality or to increase their strength properties.
Every kind of flute has particular advantages and is appropriate for certain packing pur-
poses. Manufacturers have the ability to incorporate several flutes in order to produce
customized corrugated boards that satisfy particular criteria for strength, cushioning, and
printing properties. The double walls available on the market are often composed of BC
(5–7 mm), EB (3.5–5 mm), or EC (4–5.5 mm) flutes. Figure 1 presents these examples of
flute combinations in the double-walled corrugated board.
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oped and explained a model that accounts for the organized and extensive bending of the 
cardboard [3]. The writers of this paper mainly focused on local issues. In 1995, 
Nordstrand conducted a study to investigate how the magnitude of certain imperfections 
affects the compressive strength of boxes produced from the corrugated board [4]. In 2004, 
the author studied local flaws through the examination of the nonlinear buckling of 
Rhodes and Harvey orthotropic plates [5]. Lu et al. [6] analyzed the mechanical character-
istics of corrugated cardboards, explicitly focusing on the effects of imperfections during 
compression. Garbowski and Knitter-Piątkowska [7] conducted a detailed analysis of the 
bending properties of double-walled corrugated cardboard. Mrówczyński et al. [8] sug-
gested a technique to analyze single-walled corrugated cardboard through the inclusion 
of original flaws. Cillie and Coetzee conducted a study on corrugated cardboards that had 
both global and local defects, subjecting them to in-plane compression [9]. In a recent 
study, Mrówczyński and Garbowski introduced a straightforward approach to compute 
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The corrugated board is susceptible to warping during both the manufacturing and
subsequent stages, such as storage, transit, and usage, which may lead to deformation. The
origins of these phenomena are attributed to fluctuations in temperature and humidity,
as well as mechanical stresses. There are two sorts of defects in the corrugated board,
these include global imperfections and local imperfections. Beck and Ficherauer developed
and explained a model that accounts for the organized and extensive bending of the card-
board [3]. The writers of this paper mainly focused on local issues. In 1995, Nordstrand
conducted a study to investigate how the magnitude of certain imperfections affects the
compressive strength of boxes produced from the corrugated board [4]. In 2004, the author
studied local flaws through the examination of the nonlinear buckling of Rhodes and Har-
vey orthotropic plates [5]. Lu et al. [6] analyzed the mechanical characteristics of corrugated
cardboards, explicitly focusing on the effects of imperfections during compression. Gar-
bowski and Knitter-Piątkowska [7] conducted a detailed analysis of the bending properties
of double-walled corrugated cardboard. Mrówczyński et al. [8] suggested a technique to
analyze single-walled corrugated cardboard through the inclusion of original flaws. Cillie
and Coetzee conducted a study on corrugated cardboards that had both global and local
defects, subjecting them to in-plane compression [9]. In a recent study, Mrówczyński and
Garbowski introduced a straightforward approach to compute the effective stiffness of the
corrugated board with geometric imperfections. This technique utilizes the finite element
method and the representative volumetric element [10].

Image processing is rarely employed in the study of corrugated boards. Nevertheless,
the most prevalent instance is the development of an automated garbage sorting system.
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Liu et al. created a novel trash classification model using transfer learning and model
fusion [11]. Rahman et al. devised a system for categorizing recyclable waste paper based
on template matching [12]. A further use of the image processing approach involves
calculating the number of layers in the corrugated board. Cebeci used conventional image
processing techniques to automate the numbering of the corrugated board [13]. In a similar
manner, Suppitaksakul and Rattakorn used a machine vision system and image processing
methods to accurately quantify the number of corrugated boards [14]. Subsequently,
Suppitaksakul and Suwannakit proposed an algorithm for merging corrugated board
pictures [15].

The classification of various materials and cross-section geometrical feature evalua-
tions based on images can be found in the literature. Caputo et al. used the support vector
machine algorithm to categorize items via analyzing their photos under different lighting
and positioning scenarios [16]. Iqbal Hussain et al. used a convolutional neural network,
namely the ResNet-50 architecture, to identify and categorize woven materials [17]. Wyder
and Lipson investigated the use of convolutional neural networks to identify the static
and dynamic characteristics of cantilever beams using their unprocessed cross-section
pictures [18]. Li et al. used a range of deep learning methods to examine the geometric
characteristics of a self-piercing riveting cross-section [19]. The authors demonstrated
that the SOLOv2 and U-Net topologies provided the most optimal outcomes. Ma et al.
examined the geometric characteristics of the crushed cross-sections of thin-walled tubes
made of carbon fiber-reinforced polymer [20].

The genetic algorithm is an optimization method that takes inspiration from the
natural processes of selection and genetics [21]. These algorithms use the concepts of
evolution, including selection, crossover, and mutation. The fundamental concept behind
genetic algorithms is to generate a group of individuals that reflect potential solutions
to a considering issue. Each individual is represented by a collection of characteristics,
referred to as chromosomes or genomes, that may be seen as the genetic material. These
chromosomes undergo operations, such as selection, crossover, and mutation, which mimic
the genetic processes of reproduction and variation. John Henry Holland [22] is renowned
as the founding figure in the field of genetic algorithms, which have shown remarkable
effectiveness across various domains including optimization, scheduling, and artificial intel-
ligence. These algorithms are particularly adept at navigating complex, multidimensional
search spaces where conventional optimization methods might struggle. In the field of
corrugated board production, genetic algorithms have found unique applications. Shoukat
combined these algorithms with mixed integer linear programming to optimize cost and
greenhouse gas emissions in papermaking [23], while Hidetaka and Masakazu utilized
them for scheduling in corrugated board production [24]. In the literature, one can also find
some papers related to the use of genetic algorithms in image processing. A review of such
applications for image enhancement and segmentation was performed by Paulinas and
Ušinskas [25]. Ayala-Ramirez and coauthors employed the genetic algorithms for finding
circles in images [26]. Jie et al. applied the genetic algorithm to find elliptic shapes [27]. To
the best of our knowledge, only one paper deals with the application of these algorithms for
finding flute shapes in images of corrugated boards [28]. However, it was limited to three-
layered corrugated boards. This study introduces a significant extension to five-layered
corrugated boards. This paper introduces a novel approach to ascertain the geometric
features of corrugated boards using a specialized acquisition device and an algorithm
that combines image processing with genetic algorithms, focusing on flute geometry. This
methodology could lay the groundwork for automatically modeling corrugated board
geometry from cross-sectional images. This research stands as an important contribution
to the field, offering practical and innovative solutions for the packaging industry. By
harnessing the power of genetic algorithms for geometric analysis, it opens new avenues
for efficient and accurate corrugated board production, potentially revolutionizing current
practices and sustainability in the corrugated packaging sector.
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The concepts presented in this paper were initially introduced in our previous ar-
ticle [28]. However, this paper significantly extends the scope and applicability of the
earlier research. While the prior study focused on the analysis of three-layered corrugated
board structures, the current paper proposes a refined and enhanced algorithm capable of
analyzing more complex, multilayered corrugated board structures. Specifically, this new
research addresses the challenges associated with five-layered corrugated boards, which
hold substantial relevance in the packaging industry. The enhanced algorithm demon-
strates improved adaptability and accuracy in dealing with the intricacies of these more
complex structures, offering substantial advancements over our previous work.

The paper is organized as follows. Section 2 contains descriptions of the equipment
used to acquire the images and the algorithm proposed for the analysis of five-layered
corrugated boards. The obtained results are presented in Section 3, and discussed in
Section 4. Finally, the conclusions are formulated in Section 5.

2. Materials and Methods
2.1. Corrugated Board Cross-Section Image Acquisition

The images of the corrugated board cross-section have been acquired using a device
engineered specifically for this purpose. Its precise description can be found in [28]. Images
depicting sample cross-sections were taken under uniform conditions, i.e., with controlled
LED-sourced illumination and a camera axis perpendicular to the plane of the sample face.
Figure 2a presents a 3D model of the device, whereas Figure 2b shows the mutual position
of the camera and analyzed corrugated board sample. In the case of the double-walled
cardboard, placing the sample in the device holder is necessary to ensure that the higher
flute is above the finer one. In the following study, as presented in Figure 2c, the flute
located above is referred to as f lute1, and the one below is f lute2.
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Figure 2. Device for corrugated board image acquisition: (a) a 3D model of the device; (b) the
mutual position of the device components: 1—corrugated board sample; 2—camera; 3—LED strip
[Rogalka2023]; (c) fluting indexing.

The device utilizes the ArduCam B0197 camera with a Sony IMX179 (1/3.2′′) (Tokyo,
Japan) image sensor with a resolution of 8 MPx. The acquired images were saved in a JPEG
format at a maximum resolution of 3264 × 2448 pixels.

2.2. Algorithm for Corrugated Board Geometrical Feature Identification

Figure 3 presents the flow diagram of the proposed algorithm. The RGB image
obtained from the device is first subjected to different preprocessing operations. Various
versions of the input image are then utilized in order to identify several geometrical features
of a five-layer corrugated board sample, such as its height, the flute heights, periods and
phase shifts, and the liner and flute thickness. The algorithm has been implemented in
Python 3.9.13 using the OpenCVcontrib-python 4.7.0.68 and geneticalgorithm libraries.
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2.2.1. Image Preprocessing

The input of the system was a single frame from the camera. It was an RGB image
with dimensions of 3264 × 2448 pixels. The first preprocessing operation is a grayscale
conversion into the range <0, 255>. Next, an 800 × 800 pixels subset of a grayscale image is
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cut out of the central acquisition area. Figure 4a presents the final image acquired as a result
of the described actions. In order to remove small noise from the image (caused by the
presence of cellulose fibers), the following two blurring methods were applied: averaging
with a normalized box filter and with a kernel size of 3 × 3 and bilateral filter. Figure 4b
presents the result of these operations. Finally, the blurred image was converted into a
binary image (Figure 4c) by applying a lower threshold binarization with a threshold value
equal to 75. All the parameters in the preprocessing stage were chosen empirically.
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2.2.2. Corrugated Cardboard Thickness Estimation

The thickness of the five-layer corrugated cardboard can be estimated with the same
method used for the three-layer samples which were presented in [28]. The boundary
points of the outer liners can be identified by applying column-wise scanning to the binary
image (Figure 4c). Pixels in each column of the image are analyzed. The y coordinate of
the first white pixels in each column is saved to the ULEP matrix for scanning from the
top of the image towards the bottom. Next, scanning is continued until the first black
pixel is recognized. Its y coordinate is written in the ULIP matrix. As a result, the external
points of the upper liner are written in the ULEP matrix; the ULIP matrix contains upper
liner internal points. Analogically, in order to determine lower liner boundary points,
the direction of column-wise scanning is reversed, starting from the bottom of the image
towards the top. In this way, the new matrices LLEP and LLIP, which, respectively, store
the external and internal pixels of the lower liner, are created. Figure 5 presents the results
of this operation.

In order to determine the corrugated board sample height d, the average distance be-
tween the external points of the upper and lower liner are calculated. It can be expressed as

d =
1

NC

NC−1

∑
x=0
|ULEP(x)− LLEP(x)|, (1)

where x denotes the column index, and NC = 800 is the total number of columns.
For the purpose of further geometrical feature identification, the external boundaries

of both upper and lower liners are approximated using linear functions and coordinates
from the ULEP and LLEP matrixes. The resulting linear equations can be expressed as

yU = aU x + bU , (2)

yL = aLx + bL, (3)
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where aU and bU denote the parameters of the upper liner approximation, while aL and bL
are the parameters of the lower liner approximation.
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2.2.3. Flutes Center Lines and Heights Estimations

At this stage, the corrugated cardboard flutes’ center lines and heights are estimated.
The binary image row sum curve is plotted to find the localization of liner and fluting
regions. Analyzing the number of white pixels in each row of the image, as presented
in [28], allows us to determine the approximate location of the bottom and upper liner in
the image. The sample is placed horizontally, and the curve local maximums are related to
the presence of flat layers. Therefore, the occurrence of an additional liner in the middle
of the sample should create one additional extremum visible on the curve. In the case of
the five-layered corrugated board sample, which consists of three liners and two flutes,
three local maximums should always be detected at this stage. In order to smooth the
row sum curve and highlight the maximum resulting from the liners, the same version of
the Savitzky–Golay filter with 30 interpolation points and a first-degree polynomial was
applied. Furthermore, the distance between the maximums has to be larger or equal to 20,
and the minimal value of the local maximum was equal to 0.4 of the global maximum value.
Figure 6a depicts the original row sum and smoothed curves with three local maximums
detected. It is also worth noting that the peak values can differ significantly for both the
ideal and the creased samples. Their values mainly depend on the overall arrangement of
the layers and their thickness.

At this point, the row sum curve can be further analyzed. Based on local maximums,
the curve is divided into three ranges. Each range corresponds to the area of one liner.
Range borders (black bold dashed line) are determined as middle points between two
adjacent local maximums, marked as blue bold dots in Figure 6a. In Figure 6b, the bottom,
middle, and upper liner ranges are marked in green, blue, and red, respectively. In each of
these intervals, the subsequent actions are carried out:

1. The local maximum Smax is identified.
2. The vertical line with an ordinate equal to the value of 0.9Smax (for bottom and upper

liner regions, or 0.95Smax for middle liner region) is now plotted. Two intersection
points of the curve and plotted line are determined and marked by bold dots, as
shown in Figure 6b.

3. The distance between the intersection points within each range is calculated and
denoted as bUS, bmS , and bBS for the upper, middle, and bottom liners, respectively.
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curve (red line) and the smoothed curve (blue line); (b) the upper (red), middle (blue), and lower
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For the five-layer corrugated board samples, the center line and height estimations
are calculated separately for each fluting. First, the middle liner’s approximate loca-
tion in the image must be determined. Another column-wise scanning of the binary
image (Figure 4c) is carried out. The scanning is limited to the rows with coordinates
y ∈< yint1 − 20, yint2 + 20 >, where yint1 and yint2 are consecutive intersection points of
the middle liner visible in Figure 6b. The coordinates of the first white pixels in each column
are written into the MLUP matrix for scanning from the top to the bottom of the image
and for the reversed direction into the MLBP. A linear approximation of a line passing
through the center of the area bounded by the MLUP and MLBP pixels is performed. It can
be expressed as

ym = amx + bm, (4)

where am and bm denote the parameters of the middle liner approximation. Figure 7 shows
the results of the above operations.
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Both fluting searches can now be limited based on the boundaries of the liners ex-
pressed in Equations (2)–(4). The boundary lines limiting the f luting1 searching can be
written in the following forms:

y1UBL = aU x + bU + bUS, (5)

y1LBL = amx + bm − bmS, (6)
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whereas for limiting the f luting2,

y2UBL = amx + bm + bmS, (7)

y1LBL = aLx + bL − bLS. (8)

The boundary lines are depicted in Figure 8 in red and blue, while the center lines
are presented in yellow. The center lines are approximated as central lines between two
boundary lines for each flute, respectively, and can be expressed as

ycenter 1 = acenter 1x + bcenter 1, (9)

ycenter 2 = acenter 2x + bcenter 2, (10)

where a1center, a2center, b1center, b2center are the parameters of the center lines.
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The heights of the flutes can be approximated using the following formulas:

H1 =
1

NC

NC−1

∑
x=0
|y1UBL(x)− y1LBL(x)| = 1

NC

NC−1

∑
x=0
|(aU − am)x + bU + bUS − bm + bmS|, (11)

H2 =
1

NC

NC−1

∑
x=0
|y2UBL(x)− y2LBL(x)| = 1

NC

NC−1

∑
x=0
|(am − aL)x + bm + bmS − bL + bLS|. (12)

It is worth noting that the flute height is equal to two times the amplitude of the sinusoidal
function.

2.2.4. Flute Period Searching Range

Next, the binary image is skeletonized. The result of this operation is presented in
Figure 9a. The presence of the protruding fibers in the cross-section of the sample can cause
some disturbances in the form of side branches in the skeleton. A custom filtering function
is applied to the skeletonized image to filter out the unwanted offshoots. As a result, all
side branches with contour lengths less than 50 pixels are removed (see Figure 9b).
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The limitation of period searching is necessary for the genetic algorithm to provide
credible solutions. Values Ti min and Ti max (the range of the period searching in pixels for
i-th fluting) are based on calculating the distances between the intersection points of the
skeleton contours, with three lines parallel to the flutings center line drawn through the
flute area (see Figure 9c). The average distance between the successive intersection points
and the maximum distance is determined for each fluting. The values Ti min = 0.5dii av
and Tmax = 3dii max are taken, where dii av is the average distance between the intersection
points for the three parallel lines, and dii max denotes the maximal value of the distances
between these intersection points for i-th fluting. In case of too many disturbances, e.g.,
due to the presence of long side branches or the critical deformation of the sample, the
default values Ti min = 50, Ti max = 800 are set.

2.2.5. Application of the Genetic Algorithm for the Approximation of Flute Parameters

The genetic algorithm implemented in [28] enabled the authors to determine sinu-
soidal function parameters, such as the period and phase shift, to assess the fluting layer
geometrical features. In the case of double-wall corrugated board samples, the genetic
algorithm ought to be used for each flute independently.

In the searching process for the parameters of the flutes, the following formulas for its
approximation were taken into account:

y f luting i
= acenter ix + bcenter i − Aisin

(
ϕi +

2π

Ti
x
)

, (13)

where the parameters acenter i, bcenter i, and the amplitude Ai = Hi/2 are the fluting param-
eters determined in the previous stages of the proposed algorithm. The solution from the
genetic algorithm is a set of the two following values: phase shift ϕi and the period Ti,
where i denotes the fluting index (i = 1, 2). Two separate genetic algorithm runs provided
an independent set of parameters for each fluting.

In each run, the genetic algorithm takes the eroded version of the binary image as an
input, as shown in Figure 10a. The main reason for utilizing erosion is to narrow down
the flute region, ensuring that the sine function approximation is more precise. The phase
shift ϕi and period Ti search are limited by ϕmin = 0, ϕmax = 2π, Ti min, and Ti max, where
i denotes the fluting index. The objective function is defined as a total sum of the common
pixels for the eroded image and function expressed in Equation (7) or (8) (depending on
the analyzed flute) for the given ϕi and Ti.
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2.2.6. Estimation of the Thickness of the Corrugated Cardboard Layers  
Figure 11 depicts a graphic representation of the idea for measuring the thickness of 

the paper layers. The approximate location of the flutes in the image is determined based 
on the sinusoidal function approximations performed in the previous stages of the algo-
rithm. It provides enough information to choose the regions for layer thickness measure-
ments. Areas around layer bonding points are more distorted and usually have a higher 
number of disturbances, such as protruding fibers. The area of the upper liner, where the 

Figure 10. (a) The eroded image; (b) an example of the results obtained after the optimization
processes using the genetic algorithm (red lines).

Applying the genetic algorithm, the following parameters were utilized:

1. Maximal number of iterations: 500;
2. Population size: 100;
3. Mutation probability: 0.15;
4. Elite group ratio (portion of population, which contains the individuals achieved

the best performance in the current generation, and are directly copied to the next
generation without mutation and crossover): 0.01;

5. Crossover probability: 0.2;
6. Parents portion: 0.2;
7. Crossover type: uniform.

An example of the genetic algorithm result is presented in Figure 10b.

2.2.6. Estimation of the Thickness of the Corrugated Cardboard Layers

Figure 11 depicts a graphic representation of the idea for measuring the thickness of
the paper layers. The approximate location of the flutes in the image is determined based on
the sinusoidal function approximations performed in the previous stages of the algorithm.
It provides enough information to choose the regions for layer thickness measurements.
Areas around layer bonding points are more distorted and usually have a higher number
of disturbances, such as protruding fibers. The area of the upper liner, where the thickness
can be measured, is marked in blue. A similar region for the middle and bottom liner is
marked in orange and turquoise, respectively. The pink and green colors indicate the areas
in which the thicknesses of the flutings are determined. Figure 12 shows an example of
the result.
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3. Results

The proposed method allowed the authors to identify the geometrical parameters
of any double-wall corrugated board sample in a fully automatic manner. Unfortunately,
damaging the structure of the layers or severe cross-section crushing may cause unreliable
and false results.

Figure 13 presents the results for exemplary corrugated boards samples with BC, EB,
EC, and EE flutes. The results in the form of identified geometrical features in pixels and
millimeters are summarized in Table 1.
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The developed algorithm has limitations similar to those for the single-wall samples 
presented in [28]. This has to do with the fact that the quality of the sample is the most 
important factor in terms of the credibility of the obtained results. Every imperfection in 
the form of, e.g., protruding fibers or corrugated layer deformation resulting from crush-
ing can affect the precision of the method. All samples were cut using an oscillating knife-
cutting machine, which creates irregular cut edges and visible shreds of cellulose fibers in 
all specimens. 

In Figure 14, two BC flute samples are presented. The one on the left is not damaged 
in any way by creasing. The sample on the right is crushed stochastically with a visible 
change in fluting shape. It can be noticed that the algorithm still solves the sinusoidal 
function approximation, but does not reflect the deformed corrugated layer shape. In this 
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Figure 13. Visualization of the recognized features of the corrugated board: (a) flute BC sample;
(b) the results obtained for the flute BC sample; (c) flute EB sample; (d) the results obtained for the
flute EB sample; (e) flute EC sample; (f) the results obtained for the flute EC sample; (g) flute EE
sample; (h) the results obtained for the flute EE sample.
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Table 1. Identification results of the geometrical features for the corrugated boards with flutes BC,
EB, EC, and EE.

Flute BC Flute EB Flute EC Flute EE
[px] [mm] [px] [mm] [px] [mm] [px] [mm]

f lute1 height 165 3.13 133 2.53 175 3.34 59 1.12
f lute1 period 396 7.48 347 6.56 423 7.99 190 3.59
f lute2 height 107 2.03 64 1.22 64 1.22 58 1.1
f lute2 period 265 5.01 184 3.48 194 3.67 192 3.63
Board thickness 312 5.93 245 4.66 276 5.24 161 3.06
Upper liner thickness 39 0.74 33 0.63 20 0.38 18 0.34
Middle liner thickness 12 0.23 15 0.28 19 0.36 18 0.34
Bottom liner thickness 17 0.32 21 0.4 17 0.32 25 0.47
f lute1 thickness 22 0.42 19 0.36 20 0.38 16 0.30
f lute2 thickness 17 0.32 17 0.32 20 0.38 13 0.25

The developed algorithm has limitations similar to those for the single-wall samples
presented in [28]. This has to do with the fact that the quality of the sample is the most
important factor in terms of the credibility of the obtained results. Every imperfection in
the form of, e.g., protruding fibers or corrugated layer deformation resulting from crushing
can affect the precision of the method. All samples were cut using an oscillating knife-
cutting machine, which creates irregular cut edges and visible shreds of cellulose fibers in
all specimens.

In Figure 14, two BC flute samples are presented. The one on the left is not damaged
in any way by creasing. The sample on the right is crushed stochastically with a visible
change in fluting shape. It can be noticed that the algorithm still solves the sinusoidal
function approximation, but does not reflect the deformed corrugated layer shape. In this
case, the flute period and height are not correctly measured, but can be used to estimate
the actual flute type of the crushed sample. Table 2 contains the identified parameters for
these two samples.
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Figure 14. Example of samples with BC flute: (a) a reference sample; (b) the results of identification
for the reference sample; (c) a crushed sample with many jagged edges; (d) the results of identification
for the crushed sample.

Figure 15 shows two samples of the corrugated board with the EB flute and the results
of their geometrical features identification. The corrugated board on the left is without
any damage and the one on the right demonstrates damage in the form of a crushed flute
and multiple protruding cellulose fibers. The identified geometrical parameters for both
samples with EB flutes are presented in Table 3.
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Table 2. Identification results of the geometrical features for the corrugated board with flute BC
(reference and crushed samples).

Flute BC (Reference) Flute BC (Crushed)
[px] [mm] [px] [mm]

f lute1 height 165 3.13 144 2.74
f lute1 period 396 7.48 393 7.43
f lute2 height 107 2.03 104 1.98
f lute2 period 265 5.01 262 4.95
Board thickness 312 5.93 286 5.43
Upper liner thickness 39 0.74 35 0.67
Middle liner thickness 12 0.23 15 0.28
Bottom liner thickness 17 0.32 18 0.34
f lute1 thickness 22 0.42 23 0.44
f lute2 thickness 17 0.32 15 0.28
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features identification for the damaged sample. 

The examples presented in Figure 16 depict two EC flute specimens cut out from the 
same cardboard sheet. The one on the left is a reference sample, whereas on the right, the 
sample with the cutting edge is shown, which was crushed by creasing. The results of 
processing both images are visible in Table 4. Severe deformation of the higher fluting is 
again causing a low-precision sine approximation. Period and height measurements in the 
case of lower flutes are more reliable since the creasing is less visible in the cross-section. 
On the other hand, in the case of E flutes, the presence of noise in the form of jagged edges 
and cellulose fibers intensifies due to the reduced distance between each layer. Hence, 
difficulties with obtaining reliable layer thickness measurements can occur.  
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Figure 16. Example of samples with the EC flute: (a) a reference sample; (b) the results of identifica-
tion for the reference sample; (c) a crushed sample with many jagged edges; (d) the results of iden-
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Figure 15. EB flute example: (a) a cardboard without damage; (b) the results of geometrical features
identification for the sample without damage; (c) a damaged sample; (d) the results of geometrical
features identification for the damaged sample.

Table 3. Identification results of the geometrical features for the corrugated board with the flute EB
(reference and crushed samples).

Flute EB (Reference) Flute EB (Crushed)
[px] [mm] [px] [mm]

f lute1 height 133 2.53 107 2.03
f lute1 period 347 6.56 343 6.48
f lute2 height 64 1.22 60 1.14
f lute2 period 184 3.48 190 3.59
Board thickness 245 4.66 206 3.91
Upper liner thickness 33 0.63 20 0.38
Middle liner thickness 15 0.28 12 0.23
Bottom liner thickness 21 0.4 17 0.32
f lute1 thickness 19 0.36 24 0.46
f lute2 thickness 17 0.32 19 0.36

The examples presented in Figure 16 depict two EC flute specimens cut out from the
same cardboard sheet. The one on the left is a reference sample, whereas on the right, the
sample with the cutting edge is shown, which was crushed by creasing. The results of
processing both images are visible in Table 4. Severe deformation of the higher fluting is
again causing a low-precision sine approximation. Period and height measurements in the
case of lower flutes are more reliable since the creasing is less visible in the cross-section.
On the other hand, in the case of E flutes, the presence of noise in the form of jagged edges
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and cellulose fibers intensifies due to the reduced distance between each layer. Hence,
difficulties with obtaining reliable layer thickness measurements can occur.
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Figure 16. Example of samples with the EC flute: (a) a reference sample; (b) the results of identification
for the reference sample; (c) a crushed sample with many jagged edges; (d) the results of identification
for the crushed sample.

Table 4. Identification results of the geometrical features for the corrugated board with flute EC
(reference and crushed samples).

Flute EC (Reference) Flute EC (Crushed)
[px] [mm] [px] [mm]

f lute1 height 177 3.36 124 2.36
f lute1 period 430 8.13 456 8.62
f lute2 height 62 1.18 59 1.12
f lute2 period 193 3.65 189 3.57
Board thickness 284 5.4 226 4.29
Upper liner thickness 22 0.42 16 0.30
Middle liner thickness 19 0.36 20 0.38
Bottom liner thickness 25 0.47 26 0.49
f lute1 thickness 20 0.38 20 0.38
f lute2 thickness 19 0.36 20 0.38

The last example is shown in Figure 17, where two samples of corrugated boards
with EE flutes are presented. Since the sample combines two of the lowest possible flutes
presented, it is supposedly the most difficult to analyze. The crease in such cardboard is
less visible (example on the right). Nevertheless, as the geometrical dimensions of the cross-
section are reduced, the most significant trouble is measuring the thickness of individual
paper layers. As can be noticed in the exemplary results in Figure 17b, the measured liners
and flute areas are not marked correctly; hence, the measurements are flawed. This complex
problem is further elaborated on in the discussion section. Table 5 presents the results of
the parameters identification for both samples of corrugated boards with EE flutes.
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Table 5. Identification results of the geometrical features for the corrugated board with EE flutes
(reference and crushed samples).

Flute EE (Reference) Flute EE (Crushed)
[px] [mm] [px] [mm]

f lute1 height 59 1.12 62 1.18
f lute1 period 192 3.63 189 3.57
f lute2 height 58 1.1 52 0.99
f lute2 period 191 3.61 186 3.52
Board thickness 161 3.06 146 2.77
Upper liner thickness 18 0.34 29 0.55
Middle liner thickness 18 0.34 20 0.38
Bottom liner thickness 25 0.47 15 0.28
f lute1 thickness 16 0.30 19 0.36
f lute2 thickness 13 0.25 16 0.30

The presented results are only a small part of the sample images processed during
this research. A total number of 310 different images were processed with the proposed
algorithm. The database consisted of reference, stochastically deformed (different forces
applied at different locations), and crushed via creasing corrugated board samples.

4. Discussion

In the results section, some exemplary outcomes from the algorithm for various
cardboard samples were presented. In order to evaluate this, in some way, innova-
tive method for identifying cross-section corrugated board geometrical features, the fol-
lowing section takes up the critical discussion of the results and the limitations of the
proposed approach.

As previously emphasized, the method’s effectiveness relies significantly on the pre-
cision of sample cutting. The cellulose shreds and protruding fibers visible in each cross-
section are a side effect of using an oscillating knife as a cutting tool. Since their presence
affects the outcome to a great extent, excising the samples by using, e.g., a laser cutter, is
expected to provide more trustworthy results. Another important factor that affected the
accuracy of the algorithm were the damages introduced into the corrugated board in the
process of stochastic deformation and creasing.

As described in [28], the delamination of layers, corrugated layer crushing, and the
presence of jagged edges create noticeable difficulties in determining the thickness of
each paper layer. These difficulties can also be found in the presented examples, e.g., in
Figure 17d (visibly flawed liners thickness measurement caused by cellulose fibers) and
Figure 16d (flawed flutes thickness measurement caused by its high level of crush). The
most reliable geometric parameters obtained from the algorithm seem always to be the
period of the corrugated layer. Even in cases of an inaccurate fit of the approximating
function, which was assumed as a sine function, to the shape of the visibly crushed fluting,
the period measurement can be considered a reasonable approximation (Figures 14d and
16d). In these scenarios, the heights of the corrugated layers are not entirely credible and
can be considered as auxiliary indicators.

Another problem can occur during the analysis of the cross-section of different samples.
Figure 18a shows a single-wall C-flute sample with a visible hank of cellulose fibers on
the left side of the image in the region between liners. Figure 18b depicts a smoothed row
sum curve with detected peaks for this sample. Three local maximums were recognized
in the first stages of the algorithm. Usually, this would indicate a double-wall cardboard
type, which, in this case, is obviously incorrect. The workflow of the algorithm differs
significantly for single- and double-wall corrugated board samples. Therefore, the obtained
results would be unfit for further use.
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Figure 18. Example of the error in recognizing the number of layers in the corrugated board sample: 
(a) a single-wall C-flute sample with a visible hank of cellulose fibers; (b) a smoothed row–sum 
curve of the image with wrongly localized peaks, potentially reflecting the liners of the corrugated 
board. 

Difficulty in the measurements of the liner thickness can also be caused by factors 
other than cross-section noise. Figure 19 depicts a relatively common (among samples 
processed in the research) case of both flutes being in phase with each other, meaning the 
phase shifts for both corrugated layers are almost identical. Considering that the regions 
for measuring each layer thickness are calculated based on the approach presented in 

Figure 18. Example of the error in recognizing the number of layers in the corrugated board sample:
(a) a single-wall C-flute sample with a visible hank of cellulose fibers; (b) a smoothed row–sum curve
of the image with wrongly localized peaks, potentially reflecting the liners of the corrugated board.

Difficulty in the measurements of the liner thickness can also be caused by factors
other than cross-section noise. Figure 19 depicts a relatively common (among samples
processed in the research) case of both flutes being in phase with each other, meaning the
phase shifts for both corrugated layers are almost identical. Considering that the regions for
measuring each layer thickness are calculated based on the approach presented in Figure 11,
it is impossible for the algorithm to obtain a credible area for middle liner thickness
measurements. This results in the method providing an incomplete set of geometrical
features of the sample.
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ple. The fit of the approximation function to the flute’s shape, in terms of height and pe-
riod, is strongly affected by the extent of the cardboard’s cross-section crushing. Addition-
ally, cutting corrugated boards on an oscillating knife-cutting machine, a common indus-
try practice, aligns well with this method, enabling its practical applications. 

In summary, while the method has some limitations, improvements seem feasible in 
the near future. A quick and relatively simple algorithm for extracting geometrical fea-
tures could be a crucial step in automating the modeling of corrugated board structures. 
In future studies, other evolutionary algorithms can also be utilized to find the fluting 
shape of corrugated cardboard, and the results presented in this work can serve as a ref-
erence. 

Author Contributions: Conceptualization, T.G. and M.R.; methodology, M.R. and J.K.G.; software, 
M.R.; validation, M.R., J.K.G. and T.G.; formal analysis, M.R.; investigation, M.R. and J.K.G.; re-
sources, M.R. and T.G.; data curation, M.R.; writing—original draft preparation, M.R., J.K.G. and 

Figure 19. Error in the measurements of the middle liner thickness due to in-phase composition of
the corrugated layers: (a) flute-EE sample; (b) incomplete results obtained for the flute-EE sample.

The biggest issue with the proposed method is commonly visible in processing mi-
crowave samples. The layer thickness measurement was flawed in most of the processed
flute-EE corrugated board images. This is due to interference (jagged fibers) concerning the
size of the area between the layers. A possible solution to this problem may be to limit the
regions for measuring thicknesses for each layer. The different conditions for microwave
flutes adopted in the approach presented in Figure 11 can improve the efficiency of the al-
gorithm. Figure 20a,b present results for the same image before and after limiting the areas,
respectively. The improved approach provides significantly better results. Nonetheless,
some errors, especially in flute thickness measurements, still occur.
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5. Conclusions

In this paper, the method for identifying the geometric features of double-wall cor-
rugated board cross-sections is presented. The cross-section images were collected using
a device first introduced in [28], where a similar algorithm was successfully applied for
single-wall corrugated cardboard. This enhanced method primarily yields reliable results
for five-ply samples, and is widely used in the packaging industry. The geometrical charac-
teristics of the sample were determined through complex image processing techniques and
genetic algorithms. The use of local algorithms, such as gradient-based, is not feasible for
the specific nature of the optimization problem.

The method’s effectiveness and reliability largely depend on the quality of the sample.
The fit of the approximation function to the flute’s shape, in terms of height and period,
is strongly affected by the extent of the cardboard’s cross-section crushing. Additionally,
cutting corrugated boards on an oscillating knife-cutting machine, a common industry
practice, aligns well with this method, enabling its practical applications.

In summary, while the method has some limitations, improvements seem feasible in
the near future. A quick and relatively simple algorithm for extracting geometrical features
could be a crucial step in automating the modeling of corrugated board structures. In
future studies, other evolutionary algorithms can also be utilized to find the fluting shape
of corrugated cardboard, and the results presented in this work can serve as a reference.
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