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Abstract In this paper two procedures are developed for the
identification of the parameters contained in an orthotropic
elastic-plastic-hardening model for free standing foils, par-
ticularly of paper and paperboard. The experimental data
considered are provided by cruciform tests and digital
image correlation. A simplified version of the constitu-
tive model proposed by Xia et al. (Int J Solids Struct
39:4053–4071, 2002) is adopted. The inverse analysis is
comparatively performed by the following alternative com-
putational methodologies: (a) mathematical programming
by a trust-region algorithm; (b) proper orthogonal decom-
position and artificial neural network. The second procedure
rests on preparatory once-for-all computations and turns out
to be applicable economically and routinely in industrial
environments.
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1 Introduction

The industrial production of foils to various purposes (e.g.,
paper, cardboards, metal sheets, membranes) usually gives
rise to anisotropy in mechanical properties. In many engi-
neering situations such properties are substantially affected
by the manufacturing process and turn out to be meaningful
in practical applications; therefore, their realistic accurate
description by constitutive models for structural analysis of
final products turns out to be a recurrent practical problem.

Realism and accuracy of material models obviously
require two interconnected but distinct stages in material
and computational mechanics: selection of a suitable con-
stitutive relationship; quantitative assessment of the param-
eters included in such relationship, namely “model cali-
bration”. Both stages are based on experimental data but
the latter at present often involves computer simulation of
the tests and inverse analysis. Inverse analysis frequently
turns out to represent a challenge in engineering practice
since it may exhibit mathematical complexity (such as ill-
posedness, non-convex minimization) and it can require
a heavy computational burden particularly because many
repeated test simulations are implied.

The purpose pursued in this study is a contribution to
overcome the above difficulties by recourse to “ad hoc”
methods employable in a specific industrial context. Ref-
erence is made to a, fairly popular now, material model
devised for the orthotropic elastic-plastic behavior of paper
and paperboard and endowed with particularly numerous
parameters to identify.

The main features of the experimental test primarily con-
sidered here for foil material characterization are briefly
described in Section 2, namely: (A) cruciform specimens
of paper free-foils with a central hole intended to increase
the, here desirable, non-uniformity of the stress and strain
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fields generated by the loadings imposed at the arm ends;
(B) “full field” measurements of in-plane displacements by
Digital Image Correlation (DIC).

Both the above experimental techniques and relevant
instrumentations are frequently dealt with in the recent liter-
ature, (see e.g. Chen et al. 2008 on cruciform tests and Hild
and Roux 2006 on DIC). Test simulations are performed
here by conventional Finite Element (FE) structural anal-
yses with quantitative features specified in Section 2 and
using the commercial code Abaqus.

Section 3 first summarizes the constitutive model for
paper developed by Xia et al. (2002), at present employed
in various industrial environments and implemented here
into Abaqus code by means of a user subroutine. The com-
plexity to calibration purposes of such model, containing
27 parameters, has suggested to consider a modified ver-
sion, presented in Section 3, characterized by a simpler
non-linear hardening law. The proposed inverse analysis
procedure turns out to successfully identify the parameters
which are “active” when the simplified model is adopted for
the FE simulation of a perforated cruciform specimen under
biaxial tension.

The investigations presented and discussed in the sub-
sequent Sections concern “pseudo-experimental” inverse
analyses, namely: reasonable values are attributed to the
parameters, which represent the “targets” to be identified;
the measurable quantities are computed by FE simulation
of the test and employed as input of the inverse analysis; the
resulting estimates are compared to the pre-assumed param-
eters as validation check of the identification procedure.

The parameter identification approach adopted herein is
deterministic and non-sequential: i.e. central is the mini-
mization with respect to the unknown parameters of a “dis-
crepancy function”, which quantifies the difference between
(pseudo-) experimental data and their counterparts com-
puted, through the simulation, as functions of the sought
parameters.

In Section 4, on the basis of full-field pseudo-
experimental data achievable by DIC, the parameter iden-
tification is carried out by a “Trust Region Algorithm”
(TRA), namely by minimizing the discrepancy function
through a popular mathematical programming procedure of
first-order (i.e. requiring first derivatives of the objective
functions), see e.g. Conn et al. (2000).

The minimization of the discrepancy function by TRA
turns out to imply quite remarkable computational efforts.
In order to avoid or mitigate such circumstance, an alterna-
tive inverse analysis procedure is developed and validated
in Section 5, according to the methodology called Proper
Orthogonal Decomposition (POD). Such methodology rests
on a suitable approximation (“truncation”) related to the
reasonably expected correlation of the specimen responses
(“snapshots”) to numerical tests carried out with different

sets of constitutive parameter values; each set represents
a point of a suitably pre-established “feasible domain” (or
“search domain”) in the space of the sought parameters.
The POD methodology has remote origins in applied math-
ematics; sources employed for the present applications have
been primarily the references Chatterjee (2000), Liang et al.
(2002).

In Section 5 a preliminary computational effort consist-
ing of POD is employed for the generation of suitable input
to a suitably optimized Artificial Neural Network (ANN)
which is “trained” and tested in order to make it a tool
(implemented into a software for small computer) apt to
economical and fast identification of the sought parame-
ters, see e.g. Fedele et al. (2005), Maier et al. (2010), Aguir
et al. (2011). The numerical exercises carried out evidence
the potential of this procedure which, in industrial environ-
ments, can allow to perform parameter estimation for the
simplified anisotropic model formulated in Section 3 in a
relative inexpensive and routine fashion.

Section 6 is devoted to closing remarks and to prospects
of future research.

2 Cruciform tests, full-field DIC measurements
and computer simulations

2.1 Preliminary remarks

Inverse analysis plays a central role in the present study
and is consistent with the following options in experimental
methodology: cruciform test and digital image correlation.
Traditionally cruciform tests on thin foils or laminates have
been employed with the aim of generating a uniform stress
(strain) field in the central part of the specimen, where
strains are often measured by needle extensometers; to meet
such requirement, special provisions like longitudinal slits
in the specimen arms have been adopted, see e.g. Chen
et al. (2008). The recent developments in digital correla-
tion techniques for measuring “full-fields” of displacements
and strains, combined with inverse analysis methodologies,
make it possible and fruitful to calibrate material models
of free-foils on the basis of experiments which generate
inhomogeneous response field, see e.g. Cooreman et al.
(2008).

An inhomogeneous field of displacements and strains in
the response of specimen to test, if measurable with gen-
eration of a broad set of experimental data, turns out to be
representative of the effects related to diverse parameters.
Therefore cruciform tests (CT) which induce inhomoge-
neous fields are at present frequently adopted for free-foils
mechanical characterization studies, see e.g. Lecompte et al.
(2007). In order to increase the inhomogeneities of the test
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response field, a circular hole is considered here in the
cruciform specimen.

Digital Image Correlation (DIC), based on comparison
of digitalized photos (taken before and after the test con-
sidered), can measure accurately surface displacements of
many preselected “nodes” of a grid on the specimen surface
(“full-field” measurement), see e.g. Sutton et al. (2009).
The possible ill-posedness of inverse problems is generally
mitigated or eliminated by the growth in number of diverse
experimental data.

For the simulations of the tests traditional plane-stress
finite element (FE) modeling is employed herein by means
of a commercial computer code. Later in this paper focus
will be on novel procedures intended to reduce computing
time and costs of multiple repeated FE simulations generally
implied by inverse analyses.

Some features of the above outlined operative issues are
specified here below with reference to paper and to its prop-
erties related to materials employed by a large industry
(specifically TetraPak Company).

2.2 On the experimental equipment and procedure

Figure 1 shows the shape of a cruciform specimen with a
central hole and the area where the in-plane displacement
field is monitored by DIC. A typical machine for biaxial
tests appears in Fig. 2.

field of view
‘ROI’

Grid used for 
digital correlation

(a)

(b)

Fig. 1 Cruciform-shape specimen with a hole (a) and schematic DIC
system (b)

Fig. 2 Experimental equipment for biaxial tests

The use of full-field measurement methods for the char-
acterization of anisotropic materials is a topic which has
been, and still is, intensively studied, see e.g. Lecompte
et al. (2007), Perie et al. (2009). Numerous DIC systems
are at present available on the market and have been used
in various technological domains. The remarks which fol-
low briefly outline the main features of the DIC procedure
selected to the present purposes. Methodological details are
described e.g. in Hild and Roux (2006), Sutton et al. (2009).

Photographic pictures to be taken with a (CCD) camera,
concern the reference state and different deformed states of
the observed specimen surface over an area visualized in
Fig. 1 and called Region of Interest (ROI) in the pertinent
jargon. Two images of the specimen at different states of
deformation are compared by means of a “correlation win-
dow”, i.e. on an area called Zone of Interest (ZOI). The
resulting displacement estimates, to be associated with the
center point of each ZOI, is an average of the displacements
of the pixels inside the ZOI. In the present study the ROI size
(shown on Fig. 1) is assumed to amount to 100 × 100 mm.

The specimen surface must exhibit a random speckle pat-
tern in order to obtain in the images gray value distributions
over each ZOI apt to recognize it after deformation. Speckle
patterns can be generated by lightly spraying some paints.

One of the advantages of the DIC method is that the
selection of the measurement points is flexible since it
can be carried out after the experiment. The accuracy
of displacement measurement depends primarily on the
resolution of the camera, on the quality of the speckle
pattern, and on surface conditions during deformation.
It can be assumed equal to 1/100.000 of the ROI typ-
ical length (“field of view”), according to specification
for DIC systems now available on the market (e.g.
http://www.dantecdynamics.com). Since measurements are
herein not truly experimental but results of FE simula-
tions, for the numerical validation (Sections 4 and 5)
the “pseudo-experimental” computed displacements will be
first “noised” by random perturbation addends according to

http://www.dantecdynamics.com
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a constant probability density distribution over the inter-
val between −0.5 μm and +0.5 μm; then they will be
rounded off to the nearest integer value in μm, accord-
ing to a reasonably expected accuracy of the foreseen DIC
instrument.

The cruciform specimen considered herein is shown in
Fig. 3 together with the chosen grid and its 241 nodes for
DIC measurements of displacements. Each arm exhibits
60 mm width and length, not including the clamping zones.
The hole perforated in the center has a 30 mm diameter. The
principal material axes, “machine direction” MD and “cross
direction” CD, are aligned with the arms of the cruciform
specimen. In the numerical model the double symmetry
of the system is exploited so that only one quarter of the
specimen is analyzed. In a truly experimental procedure the
measurements obtained by DIC in the four quadrants of the
ROI would give rise to differences among displacements of
symmetrically located points which could be employed to
assess the uniformity of properties in the foil and the accu-
racy of the measurements. “Pseudo-experimental” reference
displacements and their counterparts computed as functions
of the sought parameters, are compared at nodes of the “a
priori” selected grid over the monitored central area shown
in Fig. 3.

2.3 On test simulations

Figure 4 shows the finite element (FE) mesh adopted for
the simulation of cruciform tests by exploiting the double
symmetry: it involves 5226 degrees-of-freedom (dofs) in the
specimen plane. The commercial computer code employed
for all the numerical exercises in this study is Abaqus, in
its Release 6.9, Dassault System, 2009. For the present
developments “small deformation hypothesis” is adopted
herein.

R=15

R=10

50

50

30

90

DIC grid points: 241

Fig. 3 Geometry of cruciform specimen with a hole and of the grid
for displacement measurements by DIC (lengths in mm)

DOF: 5226

Fig. 4 Finite element mesh for biaxial test simulation

Of course, the adequacy and accuracy of FE analysis
depend on various factors, including modeling assumptions,
mesh discretization, time integration, etc. Therefore a study
of the FE analysis procedure as for error assessments is
advisable in view of routinely repeated applications of the
present method in industries. Such study could include, but
should not be limited to, a mesh refinement study. In order
to somehow optimize the FE model selection to the present
purposes, the mesh sensitivity of the solution has been pre-
liminarily assessed. The relevant computational exercises
have concerned an elastic isotropic cruciform specimen with
the geometry of Fig. 3 and with material parameters E =
8000 MPa, ν = 0.30, under imposed clamp displacements
applied in both directions and equal to 1.8 mm.

The present validation exercises employ plane stress
quadrilateral and triangular elements implemented in
Abaqus code. The simulations performed by using such
FE code with adaptive mesh refinements led to the orien-
tative values gathered in Table 1 of the “element energy
density error indicator” according to the criteria presented in
Zienkiewicz and Zhu (1987). Error indicator and the adap-
tive remeshing function can help for an automatic mesh
refinement optimization.

The results in Table 1 quantify the mesh-sensitivity
in terms of “error indicators” with four models (coarse,
medium, fine and very fine mesh). For the purposes pur-
sued here, two different FE models are chosen: (i) model
with a fine mesh (5226 degrees of freedom, see Fig. 4) used
only to generate the “pseudo-experimental” data; (ii) model
with a medium mesh (less dofs in order to reduce the com-
putational time) employed for the “snapshots” generation

Table 1 Error indicators resulting from different space discretizations

Mesh Dof Error [%]

Coarse 1,194 17.48

Medium 4,272 6.61

Fine 5,226 5.27

Very fine 17,199 3.10
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in the POD procedure described in Section 5.2. The use of
different FE meshes in the forward and inverse problems
avoids the so-called “inverse crime”, see e.g. Kim et al.
(2004), and more generally represents a basic check of the
procedure robustness.

3 Orthotropic elastic-plastic constitutive model
for paper

3.1 Preliminary remarks

The mechanical behavior of paper and paperboard is largely
dependent on fiber properties and shapes, fiber density,
properties of the inter-fiber bonds and on the production
process as well. The fiber orientation, particularly depen-
dent on that process, and the longitudinal properties of the
fibers are important features contributing to the in-plane
behavior of paper and to its anisotropy.

A simplifying but accurate treatment of the anisotropy
of paper rests on the assumption of orthotropy. The three
principal orthotropy directions attributed to machine-made
paper coincide with the machine direction (MD), the cross
direction (CD) and the thickness direction (ZD) as shown in
Fig. 5a.

MD
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ZD
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1
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Fig. 5 (a) Principal directions in paper and (b) typical results of
uniaxial tests (from Harrysson and Ristinmaa 2008)

Figure 5b visualizes typical behaviors of paperboard
subjected to uniaxial tensile tests along three in-plane direc-
tions, namely in MD, in CD and in an intermediate (45◦)
direction. The figure evidences significant direction depen-
dency of the response, nonlinearity of the stress-strain
relations and smooth transition between elastic and elastic-
plastic deformation stage. Unloading from the nonlinear
part of the stress-strain curve would result in a perma-
nent deformation without meaningful “damage” (i.e. the
stiffness under unloading practically coincides with the
original one governed by Young’s modulus). Interesting
experimental results of biaxial tests on paper sheets together
with their elastic-plastic interpretation are reported in Castro
and Ostoja-Starzewski (2003).

In what follows the “small” strain (εi j ) hypothesis is
assumed and plane-stress states only are considered in the
foil plane with reference axes x1 and x2 in direction MD and
CD, respectively (Fig. 5a); namely out-of-plane stress com-
ponents (σ33, σ13, σ23) are assumed to vanish consistently
with the “free-foils” concept. Homogeneity is assumed at
the macroscale, so that stresses and strains are constant
along the foil thickness. Therefore, the elastic behavior is
governed by the classical linear relationship:

⎧
⎨

⎩

ε11

ε22

2ε12

⎫
⎬

⎭
=

⎡

⎣
1/E1 −ν21/E2 0

−ν12/E1 1/E2 0
0 0 1/G12

⎤

⎦

⎧
⎨

⎩

σ11

σ22

σ12

⎫
⎬

⎭

(1)

The independent material parameters are two Young mod-
uli E1 and E2, the shear modulus G12 and the Poisson
ratio ν12 (ν21 being a consequence of the matrix symmetry),
subjected to the following constraints:

E1, E2, G12 > 0, |ν12| <
√

E1/E2 (2)

These inequalities are due to the prerequisite of positive
definiteness of strain energy density and, hence, of the com-
pliance matrix in (1), see Kaliszky (1989), Ting and Chen
(2005). In the present parameter identification procedure
(Sections 4 and 5), which will concern the three elastic
moduli (with the Poisson ratio a priori assumed) the above
constraints are “a priori” complied with by the pre-selection
of the search domain.

Inelastic strains are here assumed to be additional to the
elastic ones (in view of the “small deformation” hypothesis)
and time-independent (non-viscous), namely plastic only
(ε p

i j ). Their (nonholonomic, history-dependent, irreversible)
development along any stress history can be described by
adopting one of the elasto-plastic models specifically con-
ceived for paper materials available in the literature, see e.g.
Xia et al. (2002), Makela and Ostlund (2003), Harrysson
and Ristinmaa (2008).
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3.2 Xia et al. model

The constitutive model considered in this study is the one
proposed in Xia et al. (2002) by Xia, Boyce and Parks and
will be referred to here by the acronym XBP. Stresses are
assumed to develop within the plane x1, x2 (namely MD-
CD, see Fig. 5). The yield surface in the three-dimensional
space of σ = [σ11, σ22, σ12]T is constructed by a combina-
tion of six plane “sub-surfaces”, Nα = [N11, N22, N12]T

α ,
α = 1 . . . 6, being the unit vector orthogonal to the α-th
subsurface, with double indices 11, 22 and 12 referring to
the three axes in the stress space, for stress components σ11,
σ22, σ12, respectively (see Fig. 6).

Specifically, the yield criterion is formulated (in matrix
notation) as follows:

f
(
σ , ε̃ p, Nα

) =
6∑

α=1

[

χα

NT
α σ

σα (ε̃ p)

]2k

− 1 ≤ 0 (3)

In (3) the variable σα , called the α-th “equivalent strength”,
defines the distance of the α-th “subsurface” from the ori-
gin of the stress coordinate system; the functions σα (ε̃ p)

govern the material hardening; the scalar quantity ε̃ p means
“equivalent plastic strain” defined as:

ε̃ p =
(
εT

p ε p

) 1
2

(4)

Parameter k is intended to smooth out the corners of the
yield surface (Fig. 6) and is usually assumed “a priori” as an
integer number between 1 and 3, larger then 2 in the original
proposal of the model. Finally χα is a “switching control”
coefficient, such that:

χα =
{

1 i f NT
α σ > 0

0 i f NT
α σ ≤ 0

(5)

= −

= −

N1

N2

N4

N5

σ11

σ22

σ1

k = 1
k = 2
k = 3

θ 1 

θ 2

4 1

5 2N N

N N

Fig. 6 Intersections of the yield surface with the MD-CD plane (plane
σ12 = 0, no shear stress) for different values of parameter k

The plane “subsurfaces” for α = 1, 2, 4, 5 are shown in
Fig. 6, the other two subsurfaces (α = 3, 6) are par-
allel to the MD-CD plane with N3 = [0, 0, 1]T and
N6 = [0, 0, −1]T and are equidistant from the origin.
Besides in the model it is assumed that N4 = −N1 and
N5 = −N2. Versors N1 = [cos θ1, sin θ1, 0]T and N2 =
[cos θ2, sin θ2, 0]T , normal to the axis of shear stress σ12, in
view of the associativity assumption, are defined by the ratio
between transversal and longitudinal incremental plastic
strains under uniaxial loading in MD and CD, respectively.
These ratios, equal to tan θ1 and tan θ2, will henceforth be
denoted for simplicity by T1 and T2, respectively.

The evolution of the equivalent strengths σα which con-
trol the hardening behavior is governed by the following
functions:

σα(ε̃ p) = σ 0
α + Aα tanh

(
Bαε̃ p) + Cαε̃ p (6)

for α = 1, . . . , 5 and with the assumption that the equivalent
strengths σ3 and σ6 evolve in the same way during hardening
(σ3 = σ6).

Associativity in the elasto-plastic models (see e.g.
Kaliszky 1989, Lubliner 1990) is suggested by experiments
on paper and paperboard; therefore the plastic flow rule
reads:

ε̇ p = λ̇
∂ f

∂σ
, λ̇ ≥ 0, f λ̇ = 0 (7)

where λ represents the plastic multiplier.
The gradient of the yield function defined by (3) can be

given the expression:

∂ f

∂σ
=

6∑

α=1

⎛

⎝2k

[

χα

NT
α σ

σα

(
ε̂ p

)

]2k−1
Nα

σα

(
ε̂ p

)

⎞

⎠ (8)

It is worth noting that an essential role is played by the
switching control coefficients χα (α = 1, . . . , 6) through
(3), (5) and (8).

As a conclusion of the preceding synthesis of the consti-
tutive model proposed in Xia et al. (2002), the 27 parameters
contained in it are gathered in Table 2. The unusually high
number of parameters may give rise to an expected bur-
den and to some difficulty related to their identification in
industrial environments.

3.3 Simplified XBP model

A reduction of the parameters exhibited by the XBP model
may be desirable in view of its calibration to practical indus-
trial purposes. The simplification proposed herein concerns
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Table 2 Parameters in XBP model (α = 1 . . . 5)

No Par. Meaning

1 E1 Elastic modulus in MD

2 E2 Elastic modulus in CD

3 ν12 In-plane Poisson’s ratio

4 G12 In-plane shear modulus

5–9 σ 0
α Equivalent strength

10–14 Aα Hardening parameter

15–19 Bα Hardening parameter

20–24 Cα Hardening parameter

25 2k Exponent in yield condition

26 T1 Plastic strain ratio, loading in MD

27 T2 Plastic strain ratio, loading in CD

merely the material hardening description. The harden-
ing functions contain 4 parameters for each “subsurface”,
namely equivalent strength σ 0

α and three hardening parame-
ters, Aα , Bα , Cα , (totally 20 parameters for α = 1, . . . , 5).
The uniaxial behavior in the principal material directions of
most paper products under increasing load is well described
by the classical Ramberg–Osgood relation, see e.g. Makela
and Ostlund (2003). Therefore power-law hardening turns
out to be realistic; its adoption can reduce the number of
inelastic parameters to 17, with 2 hardening parameters
for each “subsurface”: factor qα , and exponent nα , for
α = 1, . . . , 5; namely:

σα = qα

(
ε0 + ε̃ p)nα . (9)

where ε0 is a constant to be chosen once-for-all, here ε0 =
10−6. Numerical exercises like those visualized in Fig. 7
show that the simplified model can still capture the main
features of paper and paperboard.

The full list of the parameters contained in the simplified
model is shown in Table 3.

3.4 Sensitivity assessments

The design of the experiments to be combined with parame-
ter identification procedures may be oriented and enhanced
by preliminary sensitivity analyses. Such analyses are
intended to quantify the influence of each sought param-
eter on measurable quantities and, hence, to corroborate
the expectation of its identifiability by appropriate selec-
tion of measurements (see e.g. Kleiber et al. 1997). Usual
sensitivity investigations are based on derivatives of mea-
surable quantities with respect to the model parameters:
higher normalized derivatives indicate more meaningful
measurements.
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Fig. 7 A comparison, based on uniaxial tests in five directions,
between original (a) and simplified (b) XBP model: experimental
stress-strain relationships (dashed lines) and their counterparts (con-
tinuous lines) for tuning the parameters (MD, 45◦ and CD) and for
validation of the models (22.5◦ and 67◦)

In the present case of full-field displacement measure-
ments by DIC, instead of each one of the measurable
displacement components (say u1 u2, in the reference axes
of Fig. 5a) at each grid node, the Euclidean norm of the
vector which comprises all such displacements components
is considered and its derivative is assessed with respect to
each sought parameter, xi , i = 1, . . . , P . Such norm-
based approach is an orientative, not rigorous, sensitivity
assessment, adopted here for comparisons, in view of the
high number of measurable quantities. Let K be the num-
ber of stages at which measurements are performed and
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Table 3 Parameters in simplified XBP model (α = 1 . . . 5)

No Par. Meaning

1 E1 Elastic modulus in MD

2 E2 Elastic modulus in CD

3 ν12 In-plane Poisson’s ratio

4 G12 In-plane shear modulus

5–9 Qα Hardening parameter

10–14 nα Hardening parameter (exponent)

15 2k Exponent in yield condition

16 T1 Plastic strain ratio, loading in MD

17 T2 Plastic strain ratio, loading in CD
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Fig. 8 Sensitivity of measurable quantities norms with respect to the
parameters according to formulas (11) and (12): (a) sensitivity of full-
field displacements in biaxial tests simulated with original XBP model;
(b) sensitivity of reactive forces in biaxial test simulated with original
XBP model; (c) same as in (a) but with the present simplified XBP
model; (d) same as in (b) but with the present simplified XBP model

recorded along a single test. The norm of the experimental
displacements at the k-th stage reads:

ūk =
∥
∥
∥u1

1, u1
2, . . . , uN

1 , uN
2

∥
∥
∥

k
, k = 1, . . . , K (10)

where N is the number of the grid nodes over the ROI for
DIC measurements.

By adding the K norms of all measurable displace-
ments, (10) for k = 1, . . . , K , for each parameter xi , with
i = 1, . . . , P , the sensitivity ū∗

i with a sort of “global
sense” is here assessed according to the following equa-
tions (which describe also normalization and approximation
of derivatives by forward finite differences):

ū∗
i

∣
∣
x̂ =

K∑

k=1

ūk
(
x̂ + ei
xi

) − ūk
(
x̂
)


xi
· x̂i

ūk
(
x̂
) (11)

In (11) vector x̂ denotes the point in the parameter space
from which increment 
xi of parameter xi is considered; ei

is the corresponding unit vector; ūk
(
x̂
)

represents the norm,
(10), computed by test simulation at load level k on the basis
of parameters x̂.

The norm f̄k of the vector listing the two reaction forces
f(M D) and f(C D) at the clamps, as measured response to
the displacements imposed at the k-th stage, is also consid-
ered and its sensitivity f̄ ∗

i with respect to the i-th sought
parameter is computed, again in a global sense (i.e. sum-
ming contributions relevant to all the K loading levels), by
the following formula similar to (11):

f̄ ∗
i

∣
∣
x̂ =

K∑

k=1

f̄k
(
x̂ + ei
xi

) − f̄k
(
x̂
)


xi
· x̂i

f̄k
(
x̂
) (12)
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Fig. 9 Sensitivities of displacements norm with respect to parameters
in the simplified model, at each loading stage
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Fig. 10 Sensitivities of reactive forces norm with respect to parame-
ters in the simplified model, at each loading stage

In the numerical exercises carried out in this study, K = 10
are the loading stages for measurements, at equal increments
of clamp displacements; N = 241 is the number of grid
nodes (and FE mesh nodes) where displacement compo-
nents are measured by DIC; additional experimental data
concern the two reactive clamp forces (in MD and CD
direction) at the ends of the specimen arms. The material
parameters amount to 17 (4 elastic and 13 inelastic) in the
simplified XBP model and to 27 (4 elastic and 23 inelastic)
in the original formulation of such model (see Tables 2 and
3, respectively). The increment of 1% in the argument has
been adopted for derivative approximations in (11) and (12),
namely it is assumed 
xi = 0.01 x̂i , (i = 1, . . . , P).

Figure 8 shows the resulting sensitivity values, obtained
by summing over the 10 loading stages. The plots in Figs. 9
and 10 visualize at each one of the 10 loading steps the sen-
sitivities given by (11)–(12), this time with no sum over k.
Such comparative numerical results further corroborate the
simplification in the hardening description proposed herein.

4 Parameter identification by mathematical
programming

A simple deterministic non-sequential (batch) least-square
method is adopted herein for the identification of mate-
rial parameters, namely a popular Trust Region Algorithm
(TRA). Such procedure for the minimization of the discrep-
ancy function can be very accurate, even when noisy data
are employed, but requires repetitive use of non-linear finite
element analysis and therefore turns out to be computation-
ally expensive. Of course, with reference to both the original
and modified XBP model, the material parameters which

describe compressive behavior cannot be identified by mak-
ing recourse to cruciform tests in tension, as evidenced by
the preceding sensitivity study.

The iterative first-order TR algorithm can be efficiently
employed for large scale problems with “box-constraints”
defined on the minimization variables. Each iteration step
is formulated as a two-dimensional quadratic programming
problem in the plane defined by the gradient of the objective
function and by its Gauss–Newton direction. A quadratic
approximation of the objective function is generated in each
step by the Hessian matrix which is in turn approximated by
means of the Jacobian, so that only first order derivatives
are required of the functions relating measurable quanti-
ties to the unknown parameters. Details are available in an
abundant literature, e.g. Conn et al. (2000).

In the biaxial tensile tests considered in the present
pseudo-experimental investigations, the cruciform speci-
men with perforated hole in the center is loaded in both
direction by imposing the same clamp displacements in
directions MD and CD, by a sequence of K equal steps,
run by index k = 1, . . . , K : here with K = 10. At each k-
th loading level, the in-plane displacements now denoted by
um

hk (where h = 1, . . . , 2N ) at N selected nodes of the DIC
grid on the membrane surface are supposed to be measured
(hence superscript m although their values are computed,
i.e. “pseudo-experimental”). At the same time also the reac-
tion forces, f m

k(M D) and f m
k(C D), in both loading directions

are measured and recorded. The discrepancy between the
measured displacements and reaction forces and the corre-
sponding computed quantities, marked by superscript c, is
quantified by the following “discrepancy function”, namely
by the Euclidean norm of the “discrepancy vectors”:

ω (x) =
K∑

k=1

2N∑

h=1

[
uc

hk (x)

um
hk

− 1

]2

+
K∑

k=1

[
f c
k(M D) (x)

f m
k(M D)

− 1

]2

+
K∑

k=1

[
f c
k(C D) (x)

f m
k(C D)

− 1

]2

(13)

where at each measurement stage k: uc
hk , f c

k(M D) and
f c
k(C D) are the values of calculated displacements and calcu-

lated reaction forces in MD and CD, respectively; vector x
collects the unknown parameters to be identified through the
discrepancy minimization process. The dependence of the
computed quantities on the parameter vector x is implicitly
defined by the constitutive relationships adopted in the FE
simulation of the test; thus the objective function ω is non-
explicitly defined in terms of x and is a possibly non-convex
function of x.
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Fig. 11 Inverse analyses by a trust region algorithm (TRA) on the
basis of a cruciform test: (a) identification of elastic and inelastic
parameters in the simplified XBP model by DIC measurements with
additional measurements on the reactive forces at the clamps; (b) failed
identification of the elastic and inelastic parameters involved in the
original XBP model

In practical applications, the solution procedure starts
from suitably chosen initial estimates of the sought parame-
ters, either previously assessed on bulk material or expected
on the basis of handbooks, previous experience or expert’s
judgment. The “exact” values of the sought parameters are
“a priori” assumed for the validation of the proposed method
and for the preliminary assessment of its potentialities and
limitations. In the present numerical tests the inverse anal-
yses are initialized by attributing to each parameter a value
randomly chosen in the range ±80% (namely between 20%
and 180%) of its “exact” value, i.e. possibly far away from
it, in order to test the robustness of the algorithms.

To take into account the effect of uncertainties in DIC
measurements, the pseudo-experimental data are corrupted
by randomly generated noise and truncated to a suitable

accuracy as specified in Section 2.2. Uncertainties affect
both the measurements and the system modeling. In what
follows, the effects of noisy input data on the estimates
will be investigated only to the purpose of evaluating the
robustness of the parameter calibration procedure. How-
ever, systematic modeling errors are ruled out for the present
preliminary validation purposes.

The first exercise according to the above criteria and
method concerns the identification of all “active” parame-
ters (both the elastic and inelastic ones) in the two models,
using noisy data generated in the fashion described in
Section 2.2, i.e. with a random perturbation ranging over
the interval ±0.5 μm.

Figure 11a shows the convergence of the identification
procedure which takes place when the modified XBP model
is used.
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Fig. 12 Inverse analysis by TRA, on the basis of a cruciform test, for
the identification of inelastic parameters using both DIC measurements
and measurements of reactive forces at the clamps: (a) successful iden-
tification of the 9 parameters involved in the simplified XBP model; (b)
failed identification of the 15 parameters involved in the original XBP
model
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Figure 11b shows the lack of convergence which arises
when the original XBP model is employed; similar results
were obtained with different initializations (“noised” in the
same way). Only when the initial values of the sought
parameters were chosen very close to the target values (e.g.
in the range x ± 0.1x, x being the target values) conver-
gence took place. If this is not the case the algorithm locks
in one of the local minima of the discrepancy function and
produces a poor estimation of the sought parameters.

In a second exercise the elastic parameters were consid-
ered as known and the identification procedure was carried
out for the inelastic parameters only, using the same level
of noise of the previous exercise. The results are shown in
Fig. 12.

A third identification exercise was carried out concerning
the whole set of (elastic and inelastic) parameters involved
in the modified XBP model, using a much higher level of
noise in order to assess the robustness of the procedure. Pre-
cisely the computed measurable quantities were noised by
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Fig. 13 Inverse analyses by a trust region algorithm (TRA) on the
basis of a cruciform test: (a) identification of elastic and inelastic
parameters in the simplified XBP model by DIC measurements with
additional measurements on the reactive forces at the clamps; (b) same
as in (a) but without additional measurements on the reactive forces at
the clamps

Table 4 Identification of elastic and inelastic parameters in the sim-
plified XBP model with assumed accuracy of 1 μm

Parameters Ref. values Computed values

Fig. 11a Fig. 12a

E1 [MPa] 5,600 5,645 –

E2 [MPa] 2,000 1,995 –

G [MPa] 4,100 4,210 –

q1 [MPa] 141 140 141.8

n1 0.290 0.290 0.291

q2 [MPa] 41 41.2 40.9

n2 0.228 0.229 0.228

q3 [MPa] 29 29.0 29.0

n3 0.330 0.330 0.330

2k 4 4.02 3.99

T1 −0.500 −0.502 −0.502

T2 −0.133 −0.132 −0.132

adopting a perturbation ranging over the interval ±5 μm,
assuming again a uniform probability distribution for such
perturbation. Figure 13a shows that convergence still takes
place.

However, if the last identification exercise is carried out
on the basis of DIC measurements only (i.e. values of reac-
tive forces are not exploited as data) the function to be
minimized, (13), reduces to the first summation and the
identification procedure in terms of the sought parameters
converges to values (see Fig. 13b) which are not as accurate
as in the previous case.

The exercises just illustrated evidence that the simplified
XBP model is better suited to parameter calibration than
the original XBP model and that the combined exploita-
tion of DIC displacement measurements and reactive force

Table 5 Identification of elastic and inelastic parameters in the sim-
plified XBP model with assumed accuracy of 10 μm

Parameters Ref. values Computed values

Fig. 13a Fig. 13b

E1 [MPa] 5,600 5,420 4,931

E2 [MPa] 2,000 1,930 1,758

G [MPa] 4,100 4,026 3,480

q1 [MPa] 141 138 124

n1 0.290 0.288 0.290

q2 [MPa] 41 40.2 36.2

n2 0.228 0.229 0.228

q3 [MPa] 29 28.1 25.6

n3 0.330 0.330 0.330

2k 4 4.1 4

T1 −0.500 −0.490 −0.501

T2 −0.133 −0.135 −0.134
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measurements is certainly beneficial in the proposed iden-
tification procedure.

Finally, since only normalized values of the estimated
parameters are shown in the Figs. 11–13, some absolute val-
ues of such parameters at convergence are listed in Tables 4
and 5 together with the corresponding target values.

5 Inverse analysis by proper orthogonal decomposition
and artificial neural networks

5.1 On proper orthogonal decomposition to the present
purposes

The identification procedure proposed in this Section is an
alternative to the one presented in Section 4. Its main feature
is to condense most of the computational burden into a pre-
liminary phase which involves computations to be carried
out once-for-all; the further calculations needed for param-
eter estimation can be performed by exploiting the “tool”
generated in the preliminary phase.

In the present engineering context it is particularly desir-
able that the assessment of material parameters be carried
out repeatedly and routinely, by using equipment (includ-
ing small computers) apt to provide all the sought estimates
in a fast manner. In most practical situations including the
real-life problems considered herein, the following circum-
stances characterize parameter identifications: (a) in the
space of the sought parameters, a finite region (“search
domain”) can “a priori” be specified (some times by an
“expert” in the field), at least through lower and upper
bounds on each parameter, as feasible domain of search;
(b) let the term “response vectors” be used to denote
different vectors of measurable quantities obtained as out-
put of the same computational model by only varying
the embedded material parameters: if such variations are
within the above defined “search domain”, the correspond-
ing “response vectors” turn out to be correlated, i.e. “almost
parallel” in their space.

The correlation (b) among response vectors can be fruit-
fully exploited by making recourse to Proper Orthogonal
Decomposition (POD). This procedure, of growing inter-
est in mechanics, can be summarized as follows (for details
see e.g. Chatterjee 2000, Ostrowski et al. 2005, 2008).
Starting from, say, S points (“nodes”) in the pre-selected
P-dimensional “search domain” in the space of the sought
parameters, let experiment simulations lead to the S corre-
sponding vectors u (“snapshots” in the POD jargon), each
one collecting all the M measurable response quantities.
As suggested by the correlation of the snapshots gathered
in the M × S matrix U, new Cartesian reference axes are
determined such that, sequentially, a norm of the snapshot

projections on each of them is made maximal. There-
after a “truncation” is carried out, namely only K axes
with non-negligible component are preserved. Such proce-
dure computationally implies the calculation of eigenvalues
and eigenvectors of the (symmetric, positive semidefinite)
matrix UT U = D of order S. After this preliminary com-
puting effort, a “truncation”, based on a comparative assess-
ment of the above eigenvalues, leads to a M × K matrix �̄

with K � M , which represents a new “truncated” Carte-
sian reference. Thereafter, the snapshot “amplitudes” in the
new reference are easily computed and gathered in K × S
matrix Ā = [a1 . . . as]. After the above developments every
snapshot u can be approximated as follows:

ui ≈ �̄ ai (i = 1, . . . , S) or U ≈ �̄A (14)

The above outlined POD approximation (in other terms
“compression”) of the information contents of the snap-
shot matrix U generated once-for-all at the initial phase,
is accomplished, again once-for-all, by “truncation” of the
eigenvalues which contribute less then a threshold (say
1%) to the cumulative sum of all eigenvalues. Any new
“snapshot” u, vector of experimental data provided in the
future by DIC and by possible other instruments (such as
those measuring arm loads) can now be “compressed” to its
“amplitude” ā in the truncated reference system generated
by the POD procedure, namely:

a = �̄
T

u (15)

When the number P of parameters to estimate increases
(and it is relatively high in the present context), the com-
putational burden of “snapshots” generation (as first stage
of the above outlined POD method) grows exponentially
with the dimensionality of the domain over which the grid
of sampling points (nodes) has to be selected.

The following procedures turn out to be considered in
the literature, e.g. Mackay et al. (1979), Iman and Conover
(1980), for the generation of such node grid: (a) each
parameter interval corresponding to the search domain is
subdivided into (usually equal) intervals giving rise to a
“rectangular grid”; (b) the number of nodes is a priori cho-
sen and the nodes are distributed randomly over the domain
(with danger of poor density in some subdomain); (c) the
search interval of each one of the P parameter variables
is subdivided into S equally spaced “levels”, but only one
node is allowed to occupy each level (“Latin Hypercube
Sampling”). Procedure (c) has been adopted to the present
purposes.

5.2 On the neural networks adopted herein

Artificial Neural Networks (ANNs) can basically be inter-
preted as a mathematical construct consisting of a sequence
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of elementary operations apt to approximate a generally
complex (say nonlinear and/or non-analytical) relationship
between two variable vectors, x and y. Fundamentals of
(“feed-forward”) ANN methodology are available in a wide
literature, e.g. Waszczyszyn (1999), Haykin (1998).

In the present context, for the set of S parameter vec-
tors x j ( j = 1, . . . , S) corresponding to the nodes of the
pre-selected grid in the “search domain”, let the “direct
problem” solutions by FE test simulations be represented
as follows:

y j
COMP = H

(
x j

)
(16)

The corresponding “pseudo-experimental” data are gener-
ated by corrupting the test simulation output for given x j

through an additive random perturbation e j , namely ( j =
1, . . . , S, S being the above number of simulations):

y j
EXP = H

(
x j

)
+ e j = y j

COMP + e j = HE

(
x j

)
(17)

The hypotheses underlying (17) are as follows: absence of
a deterministic systematic error; additivity of measurement
noise as random perturbation; null mean values of the per-
turbation. Let the inverse analysis problems concerning data
y j

EXP as input be concisely represented as:

x j = H−1
E

(
y j

EXP

)
j = 1, . . . , S (18)

In the present context an artificial neural network (ANN)
can play the role of a perturbed operator H−1

E which leads
to the output x j corresponding to an assigned input vector
y j

EXP. In other words, ANNs are intended to reconstruct a
continuous locus in the x-space on the basis of an assigned
set of points x j which correspond through (18) to points
y j

EXP in the space of measurable quantities.

Pairs of vectors
(

y j
EXP, x j

)
, j = 1 . . . S, related to each

other through (17) and (18), are “patterns” employed for
“training”, “testing” and validation of ANNs. The use of
patterns corrupted by random noise makes the ANN more
robust and apt to deal with truly “noisy” input data.

Generally, for the design and the computational behavior
of ANN a balance is desirable between the dimensionalities
of vectors x and y. In the present context the number of
experimental data, i.e. the dimension of vector u containing
full-field measurements by DIC turns out to be by orders of
magnitude larger than the dimension of the parameter vector
x. Therefore the role of vector y in (11) is attributed here
to amplitude vector a which approximates the information
contained in snapshot u by compressing it through the POD
procedure outlined in the preceding Subsection. The role of
vectors y = a is twofold: the preliminary generation of the
ANN by means of the “patterns” (xi , ai , i = 1, . . . , S);

the input of the ANN for the estimation of the parameters
(x) on the basis of a test on cruciform specimen with DIC
measurements.

The above remarks evidence the following potential
advantages of POD-ANN-based identification procedures
over the traditional discrepancy minimization techniques
applied in Section 4. The snapshot generation (matrix U)
and its “compression” (matrix A computation) are per-
formed once-for-all; once-for-all is carried out also the
subsequent training phase of ANNs on the basis of available
patterns computed by test simulations through the direct
mathematical model. Later, the applications of a trained
ANN demand limited processing capacity, computer stor-
age and CPU time, and, therefore, may be done routinely by
simple operations.

The kind of ANN (details e.g. Waszczyszyn 1999,
Haykin 1998) adopted in this study and employed to val-
idate the proposed model calibration, is usually called
Multi-Layer Perceptron (MLP). It is characterized by the
following main features: the neurons in hidden layers and
output layer perform linear combinations and sigmoidal
transformations; training consists of a “back-propagation”
procedure based on classical Levenberg–Marquardt algo-
rithm; the simple “early stopping” criterion is here adopted
in order to prevent overfitting. Training, testing and valida-
tion here will employ 70, 15 and 15%, respectively, of the
POD pre-computed patterns.

To control and test an ANN training process, a criterion is
needed to assess the “error”, namely the difference between
the network output and the output from the training samples.
The criterion here adopted rests on the “mean error”:

E = 1

S′
S′

∑

j=1

⎡

⎣
P∑

k=1

(
x j

k − t j
k

x j
k

)2
⎤

⎦

1/2

(19)

where: S′ is the number of pattern pairs, t j is the input of
the j-th pattern-target pair, and x j is the network output
corresponding to the pattern input a j = y j ( j = 1, . . . , S′).

5.3 Numerical validation

The POD-ANN procedure proposed and outlined in the pre-
ceding Sections 5.1 and 5.2 has been validated by numerical
exercises, some of which are summarized in what follows.

With reference to the modified XBP model, Table 6 lists
the 12 parameters involved in the identification procedure
by cruciform tension tests with K = 10 stages of full-
field measurements (DIC displacements and reactive load,
included). Poisson ratio ν12 has been assumed as “a priori”
given in order to limit the number of parameters to identify.
The parameters governing the compression subsurfaces (qα ,
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nα with α = 4, 5) have been also assumed as given “a pri-
ori”, since the biaxial tension test considered in the present
identification procedure does not lend itself to the calibra-
tion of such compression parameters, as clearly indicated by
the very low values of the corresponding sensitivities high-
lighted in Fig. 8. The search domain adopted is specified
in Table 6 by lower and upper bounds on each parameter
to identify. Over this 12-dimensional domain S = 10,000
nodes are here generated according to approach (c) out of
the three options mentioned in Section 5.1. At each stage
the number of experimental data is 484 (forces in direc-
tions MD and CD; two displacement components in the
foil plane at each one of 241 selected nodes of the FE
mesh of Fig. 4, i.e. at each one of the grid nodes over the
ROI employed for DIC, Fig. 3). Therefore the total num-
ber of pseudo-experimental data (“snapshots”) in the present
computational checks amounts to M = 4,840.

To simulate measurement errors (“noise”) a random per-
turbation has been added to the DIC data generated with a
uniform probability density over the ±1 μm interval. The
snapshot matrix U on which the POD procedure is based turns
out to have the dimensions 4,840 × 10,000; its once-for-all
generation through a sequence of 10,000 direct analyses (by
Abaqus FE code) required 30-90 sec for each analysis on a
Intel(R) Core(TM)2 CPU 6600 with 4GB RAM memory.

The POD “truncation” has been carried out at the 36-th
eigenvalue of matrix D (of order 10,000). The eigenvalues
assessment required a computational effort of few minutes
on the above specified computer; the subsequent numeri-
cal solution of the linear algebraic problem to generate the
amplitudes matrix A (of size 36 × 10,000) was achieved
with comparatively negligible addition of computing time,
as clearly expected.

Table 6 Material parameters in simplified XBP model and relevant
bounds which define the search domain

Parameter Range

min max

E1 [MPa] 5,000 8,000

E2 [MPa] 2,000 5,000

G [MPa] 1,500 4,500

q1 [MPa] 75 150

n1 0.10 0.40

q2 [MPa] 25 100

n2 0.10 0.40

q3 [MPa] 25 100

n3 0.10 0.40

2k 2 6

T1 −0.400 −0.600

T2 −0.10 −0.25

In the ANN of the popular kind MLP mentioned in the
preceding Subsection, input and output layers consist of
36 and 12 neurons, respectively. Its architecture has been
designed with a single “hidden layer” containing 72 neu-
rons, active with a linear combination and a sigmoidal
transformation as usual. The choice of the optimal net-
work is oriented to a compromise between the conflicting
requirements of architecture simplicity and estimation accu-
racy. The neural networks, with different number of neurons
in input layer (due to different levels of POD “trunca-
tion”) and with different number of neurons in hidden layer,
were trained and tested in order to find the best network
architecture, see Fig. 14. For the identification of material
parameters in simplified Xia model it turns out that the best
ANN architecture consists of 36–72–12 neurons in input,
hidden and output layer, respectively.

The above mentioned operative sequence “FE simula-
tion + POD + compression” has produced 10,000 “pat-
terns”, i.e. pairs consisting of a parameter vector and
the corresponding snapshot “amplitude” vector. The ANN
training consists in computing, here by the Levenberg-
Marquardt back-propagation algorithm, the transformation
coefficients (36 × 72 “weights” and 72 “bias” in hidden
layer, and 72 × 12 “weights” and 12 “bias” in output layer)
in all (72 + 12 = 84) active neurons.

As an example of details in the present numerical exer-
cises, Table 7 collects different mean values of errors in

training set
testing set

training set
testing set

12    18       24     30     36     42
0

5

10

15

20

25

30

(a)

18       36        72       108      144
0

5

10

15

20

(b)

Fig. 14 Mean error according to (19) of training and testing results
for the design of a ANN apt to identify the parameters in the simplified
XBP model: (a) as function of the neuron number in the input layer
with 72 neurons in the hidden layer; (b) as function of neuron number
in the hidden layer with 36 input neurons
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Table 7 Error mean values (in %) in ANN testing for three different
numbers of training patterns

Param. 1,000 5,000 10,000

E1 2.1 1.6 1.4

E2 2.1 1.7 1.5

G 2.6 1.8 1.6

q1 5.2 5.0 4.8

q2 7.0 5.4 4.4

q3 26.1 17.4 17.0

n1 5.8 4.7 4.4

n2 7.7 6.1 5.5

n3 22.6 17.6 16.7

2k 11.7 9.1 9.1

T1 5.9 4.4 4.3

T2 6.4 4.3 4.0

estimates obtained by adopting different number of “pat-
terns” in the ANN training: error here means “distance”
from the parameter vector xi originally used for the train-
ing as part of the i-th pattern and now a “target” which is
compared to the value generated by the trained ANN with
input given by the corresponding amplitude vector.

Testing of the above generated ANN has been performed
by employing 100 patterns randomly selected in the set of
the 10,000 patterns preliminarily generated, but different
from those used for training. The inputs to the ANN are
again perturbed as above for training by ±0.5 μm noise (see
Section 2.2). Figure 15 visualizes the results of such test-
ing procedure. The distributions of percentage errors in the
above specified sense (differences between target and ANN
output, in percentage of the former) are synthesized by the
mean errors (i.e. their norms) indicated over each diagram.
The identification accuracy for some plastic parameters in
the simplified XBP model considered turns out to be rather
low. Remedies may be achieved in practice by optimizing
the choice of the ANN kind (e.g. by selecting an RBF-ANN)
and its design; alternatively, a subsequent estimation phase
might be useful, to be performed by assuming as known
the ANN estimates affected by minor errors and by using
all estimates for the initialization of a TRA procedure with
only the uncertain parameters as variables.

The mean values of errors plotted in Fig. 15 are com-
puted for each k-th material parameter separately by the
usual formula:

errk = 1

N

N∑

n=1

∣
∣
∣
∣

yn
k − tn

k

yn
k

∣
∣
∣
∣ (20)

where: N = 100 is the number of testing pairs, yn
k is the k-th

output of the n-th “pattern-target” pair, and tn
k the network
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Fig. 15 Performance of the MLP-ANN here designed for iden-
tification of 12 parameters in XBP model with measurement noise
±0.5 μm: percentage of relative error in abscissae; in ordinates,
percentages of results within each abscissae interval

output corresponding to the k-th parameter of the pattern
input xn .

An obvious difficulty intrinsic to the POD-ANN iden-
tification method arises from the relatively high number
of parameters despite the transition here proposed from
the original to a simplified XBP model. The consequent
high dimensionality of the parameter space implies, through
obvious relationship, an exponential high number of grid
nodes over the search domain (e.g. with 12 parameters,
two or three values for each parameter leads to 4,096 or
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16,777,216 snapshots, respectively). Therefore, with rea-
sonable snapshot number S in the preliminary POD com-
putations (like S = 10,000 in the present exercises), the
density of nodes over the domain is low (2.155 in average
with S = 10,000) and, hence, low becomes the accuracy of
the estimates provided by the trained ANN on the basis of a
set of experimental data through the approximate interpola-
tion which is its purpose. Anyway, the increase of snapshot
number S concerns only the preparatory computations to be
done once-for-all.

6 Conclusions

The research project which includes the study presented
herein is motivated by the following circumstances:

(i) technologies leading to products based on foils (pri-
marily to food containers but also to geo-membranes
for dams and membranes for architectural tension
structures) require at present mechanical characteriza-
tion of free-foils as for anisotropic elastic and inelastic
properties; these properties depend on the production
process and substantially influence the quality of the
final products;

(ii) material parameters, which govern these properties,
should be quantified (for later computer simulations
of processes in fabrication and product employments)
accurately, economically and fast, routinely in an
industrial environment.

As a contribution to such practical purposes, the follow-
ing features of the free-foils mechanical characterization
have been investigated herein with some novelties with
respect to the state-of-the-art praxis: (a) biaxial tests on
cruciform specimens with substantially non-uniform stress
field (which is made so by the specimen geometry with
a central hole) and full-field displacements measurements,
carried out at different load levels in a single test, by digital
image correlation; (b) adoption of a modern, sophisticated
and versatile material model (originally proposed to the
paper industry), with a simplification which reduces the
parameter number without accuracy reduction in practical
applications; (c) parameter identification by inverse anal-
yses which can be carried out by a portable computer fed
by a large number of digitalized experimental data; these
are “compressed” by a “proper orthogonal decomposition”
procedure based on preparatory computations (“snapshots”
production and “truncation”) and are input into a previously
trained and tested artificial neural network accommodated
as software tool in a small computer ready to provide the
sought parameters by means of its repeated routine use.

Further developments, in progress within this research
project, concern more general material models (including
viscosity, damage and ultimate strength) and alternative,
hopefully more effective and versatile, inverse analysis pro-
cedures, in particular a procedure based on the sequence
“proper orthogonal decomposition”, radial basis functions,
mathematical programming algorithm for discrepancy min-
imization; finally, stochastic approaches (such as Kalman
filters) to the parametric identification problems tackled
here are desirable in order to assess errors of the estimates
due to “noise” in experimental data.
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Appendix

The mathematical computational procedure called Proper
Orthogonal Decomposition (POD) adopted herein in order
to make more economical and fast the inverse analyses, has
been outlined in Section 5.1 This Appendix is intended to
provide supplementary information as a contribution to clar-
ify the proposed method which involves details available in
cited references.

(a) The P parameters to identify are gathered in vec-
tor p and play the role of the unknown variables. In
their P-dimensional space the “search domain” (SD)
is specified be the “expert” by means of lower and
upper bounds which define for each parameter the
interval expected to contain the sought values of that
parameter. Within the SD a selection of S points
(“grid nodes”) has to be performed in order to provide
parameter vector p1 . . . pS as input to S test simula-
tions (“direct” FE analyses) apt to generate S vectors
u1, . . . , uS (“snapshots”) of measurable quantities as
pseudo-experimental data in view of the POD lead-
ing to “fast” inverse analyses. For such node selection
the procedure called “Optimal Latin Hypercube Sam-
pling” was adopted in the present study and is briefly
outlined below, while details can be found e.g. in
McKay et al. (1979), Koehler and Owen (1996):

(i) In a first step a Latin Hypercube Sampling (LHS)
is randomly generated as a P × S matrix, where
each row is related to a model parameter and each
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column defines a point in the parameter space,
i.e. one of S nodes;

(ii) Random generation of LHS usually has a poor
statistical quality and is optimized in order
to improve the sampling point distribution in
the parameter space (i.e. “space filling prop-
erties”). Here the Enhanced Stochastic Evolu-
tionary Algorithm (ESEA) is adopted for LHS
optimization. The ESEA is based on simple
element-exchange techniques and on a “Max-
imin Distance” optimality criterion (details avail-
able in Jinb et al. 2005). A simple 2D example
of randomly generated LHS and the subsequent
optimized LHS shown in Fig. 16

(b) The outline of the POD procedure applied to the
present purposes in Section 5.1 can be clarified by
the following additional remarks and related flowchart
(Fig. 17). The transition from the snapshot matrix U
consisting of the S vectors ui of measurable quanti-
ties (computed by FE simulations) to matrix A of their
“amplitudes” through the “basis matrix” � requires the
following computational effort: accurate assessment of
eigenvalues and eigenvectors of the square positive-
definite (or semidefinite) matrix D, which is generally
large (here S = 10,000) since its order equals the num-
bers of nodes over the multidimensional space of the
sought parameters. It is worth underlying here two cir-
cumstances: such effort is done once-for-all, like the
effort for the S simulations leading to the snapshots
ui ; the relevant mathematical proofs (particularly, the
proof that the generation of matrix � consists of a
sequence of optimizations) can be found in refer-
ences Chatterjee (2000), Liang et al. (2002). After
the “truncation” leading to the “compressed” basis �̄,
the approximate linear relationship u ≈ �̄a between
amplitude and corresponding snapshot provides the
following practical benefits in two quite different tools
of numerical mathematics for parameter identification.

(a) (b)

Fig. 16 Latin Hypercube Sampling with P = 2 and S = 15 (a)
randomly generated; (b) optimized with “maximin distance” criterion

Select S “nodes” 
in P-dimensional parameter space

By test simulation (FEM) compute:
S response “snapshots” u, each one 

in terms of the M measurable quantities

Compute: matrix ;
its eigenvalues its eigenvectors 

Compute the “optimal basis”

, 
so that “amplitudes” read:

“Truncate” to after larger 
so that: 
K-vector with is the 

approximate “amplitude” of snapshot u

Fig. 17 Flowchart of the Proper Orthogonal Decomposition (POD)
procedure applied herein in order to “compress” any vector u of mea-
sured or measurable quantities to its “amplitude” a with much less
components

(i) When an ANN is adopted, “patterns” consist-
ing of pairs of corresponding vectors {ai , pi }
(parameter vectors pi as “targets”) are employed
for ANN training, testing and validation: thus
the neuron number in the input layer is strongly
reduced with respect to the snapshot dimension
(instead of snapshot u its approximate amplitude
a); such reduction generates a balance between
the neuron numbers in input and output layers
as required by achievement of robustness in the
ANN computational performance.

(ii) When an iterative algorithm is employed for
the discrepancy function minimization (like the
TRA, here used in Section 4 only in order to
check the identifiability of the sought parameters)
a sequence of many test simulations is required
with diverse inputs of parameters. Then the
recourse to interpolations by Radial Basis Func-
tions among pre-assessed amplitudes reduces by
orders of magnitude the computing times with
respect those needed for FE simulations. Some
details on the above approach, not adopted
herein, can be found in Liang et al. (2002),
Ostrowski et al. (2005), Buljak and Maier (2011).
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